
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 369178, 16 pages
doi:10.1155/2008/369178

Research Article
Power Aware Simulation Framework for
Wireless Sensor Networks and Nodes

Johann Glaser, Daniel Weber, Sajjad A. Madani, and StefanMahlknecht

Institute of Computer Technology, Technical University of Vienna, 1040 Wien, Austria

Correspondence should be addressed to Johann Glaser, glaser@ict.tuwien.ac.at

Received 1 October 2007; Revised 21 February 2008; Accepted 16 May 2008

Recommended by Sandeep Shukla

The constrained resources of sensor nodes limit analytical techniques and cost-time factors limit test beds to study wireless
sensor networks (WSNs). Consequently, simulation becomes an essential tool to evaluate such systems.We present the power
aware wireless sensors (PAWiS) simulation framework that supports design and simulation of wireless sensor networks and nodes.
The framework emphasizes power consumption capturing and hence the identification of inefficiencies in various hardware and
software modules of the systems. These modules include all layers of the communication system, the targeted class of application
itself, the power supply and energy management, the central processing unit (CPU), and the sensor-actuator interface. The
modular design makes it possible to simulate heterogeneous systems. PAWiS is an OMNeT++ based discrete event simulator
written in C++. It captures the node internals (modules) as well as the node surroundings (network, environment) and provides
specific features critical to WSNs like capturing power consumption at various levels of granularity, support for mobility, and
environmental dynamics as well as the simulation of timing effects. A module library with standardized interfaces and a power
analysis tool have been developed to support the design and analysis of simulation models. The performance of the PAWiS
simulator is comparable with other simulation environments.

Copyright © 2008 Johann Glaser et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The advances in distributed computing and micro-electro-
mechanical systems (MEMSs) have fueled the development
of smart environments powered by wireless sensor networks
(WSNs). WSNs face challenges like limited energy, memory,
and processing power and require detailed study before
deploying them in the real world. Analytical techniques,
simulations, and test beds can be used to study WSNs.
Though analytical modeling provides a quick insight to study
WSNs, it fails to give realistic results because of WSN-specific
constraints like limited energy and the sheer number of
sensor nodes. Real world implementations and test beds
are the most accurate method to verify the concepts but
are restricted by costs, effort, and time factors. Simulations
provide a good approximation to verify different schemes
and applications developed for WSNs at low cost and in less
time. The available simulation frameworks are either general
purpose or WSN specific. The general purpose network sim-
ulators do not address WSN specific unique characteristics
while WSN specific simulators mostly lack the capability of

capturing and analyzing the power consumption and timing
issues at the desired level of granularity.

The proposed PAWiS simulation framework [1, 2] assists
in developing, modeling, simulating, and optimizing WSN
nodes and networking protocols. It particularly supports
detailed power reporting and modeling of wireless envi-
ronments. A typical WSN node may comprise various
types of sensors (e.g., temperature, humidity, strain gage,
pressure), a central processing unit (CPU) with peripherals,
and a radio transceiver. The simulation covers the internal
structure of these nodes as well as communication among
them. Sensor nodes forming a network communicate with
each other via an ad hoc multihop network. The range of
applications that can be simulated covers many domains
such as building automation, car-interior devices, car-to-car
communication systems, container monitoring and tracking,
and environmental surveillance.

The PAWiS simulation framework provides a way to
reduce the overall power consumption by carefully opti-
mizing various design aspects within the context of the
application. Enhancing energy performance could propel



2 EURASIP Journal on Embedded Systems

many new applications since the lack of sufficient battery
lifetime or limited energy scavenging systems is still the main
cause for the slowly spreading number of WSN applications.

In previous research performed at the Vienna University
of Technology [3], several weaknesses of current WSN nodes
were identified. These include the wakeup problem (i.e.,
how to wakeup a sleeping node), the voltage matching
and power supply problem, the fairly long oscillator start-
up time, and other hardware related problems. However,
overall efficiency also strongly depends upon the application
and its interaction with other nodes and the environment.
Here, communication protocols play an important role, but
considering the different layers of protocols independently
and not taking into account adjacent layers as well as
the hardware and environment, improvements can only
be suboptimal [4]. PAWiS explicitly supports cross-layer
design to exploit the synergy between layers. Several aspects
regarding power aware wireless sensors are emphasized and
directly supported by the PAWiS framework. The PAWiS
framework hence helps to capture the whole system in one
simulation and extracts power consumption figures from
software and hardware modules uncovering leakages in early
design stages. The main contributions of this work are as
follows.

(i) One of the main contributions is to equip the user to
program models of a wide variety of abstraction,

(ii) Another contribution is to model the internals of
WSN nodes as well as the communication between
them. The framework distinguishes between software
and hardware tasks, yet it is easy to change the
hardware/software partitioning,

(iii) one of the main contributions also is an elaborate
power simulation with any level of accuracy which
can still be balanced with complexity. The simulated
power consumption can depend on the supply
voltage, for example, for a nearly empty battery
when supplying a microcontroller that operates at
very low voltages. In WSN nodes, components with
different supply voltages are combined resulting in
the need for low dropout regulators (LDOs) and
DC/DC converters. The PAWiS framework allows to
model this hierarchical supply structure as well as the
efficiency factor of the converters.

(iv) Powerful analysis and visualization techniques are
provided to evaluate the simulation results and derive
a path to optimization.

(v) The RF communication is modeled according to real-
world wave propagation phenomena while still main-
taining an efficient simulation. It includes interferers,
noise, and attenuation due to distance to influence
the bit error ratio of communication links. No
preset topology is required because the packets are
transmitted to all nodes within reach. The topology
of network communication itself originates from the
link quality and the routing algorithm. With this
approach any routing protocol, especially ad hoc
protocols, can be implemented. The transmission

model implementation is entirely independent of the
underlying modulation format enabling the simula-
tion of any type of modulation. Multiple participants
can utilize the RF channel by multiple access schemes
and are separated by space, time, frequency, and
code.

2. RELATEDWORK

To have credible results through simulation, the choice of
models and the simulation environment is very important.
Key properties for WSN simulators must include a way
to capture energy consumption at any level of abstraction,
powerful scripting language, graphical user interface (GUI)
support to animate, trace, and debug, and the ease to
integrate new modules. Some of these key properties are
discussed in [5].

NS-2 is a discrete event, object-oriented, general purpose
network simulator written in C++ (http://www.isi.edu/
nsnam/ns/). According to [6], it is the most widely used
simulator and has a rich library of protocols but focuses
mainly on IP networks. OTcl [7] is used as scripting language
to control and configure simulations. It provides a GUI
support with the network animator (Nam) which is not so
good and only reproduces NS-2 trace [5]. For WSN, NS-
2 does not scale well, and it is difficult to simulate 100+
nodes [8]. NS-2 lacks detailed support to measure the energy
utilization of different hardware, software, and firmware
components of a WSN node. “One of the problems of ns2 is its
object-oriented design that introduces much unnecessary inter-
dependence between modules. Such interdependence sometimes
makes the addition of new protocol models extremely difficult,
which can only be mastered by those who have intimate
familiarity with the simulator” [9].

SensorSim [10] is an NS-2-based simulator for modeling
sensor networks. The authors have provided a power model,
a battery model, and a CPU model to address sensor
network specific constraints but because of the “unfinished
nature of the software,” the simulator is no longer available
(http://www.nesl.ee.ucla.edu/projects/sensorsim/).

OMNeT++ [11] is a discrete event, component based,
general purpose, public source, modular simulation frame-
work written in C++ (http://www.omnetpp.org/). It provides
a strong GUI support for animation and debugging. The
mobility framework (MF) [12] for OMNeT++ is a specific
purpose addon to simulate ad-hoc networks. In the MF,
the links between pairs of neighbor nodes are specified
with OMNeT++ gates with the help of an additional global
module called channel control. Unlike “visible communi-
cation paths” which are created and freed in bulk, the
air module of the PAWiS framework (see Section 3.3.7)
decides about connection between pairs of nodes dynami-
cally based solely on their position information and other
radio transmission effects. Another difference is the cap-
turing of power consumption with the power meter (see
Section 3.3.8) that helps to identify major energy consuming
modules. OMNeT++/MF does not provide a WSN specific
module library [13] which can help expedite the design
process.



Johann Glaser et al. 3

SenSim [14] is an OMNeT++ based simulation frame-
work for WSN. Some protocol layers and hardware units are
implemented as simple OMNeT++ modules. They have pro-
vided implementations for different WSN specific protocols,
battery, a simple CPU implementation, a simple radio, and
a wireless channel. A coordinator module is implemented
to assist in inter-communication between hardware and
software modules. It does not add additional functionality
to OMNeT++ other than a simulation template with a small
number implemented modules.

NesCT (http://www.nesct.sourceforge.net/) is an add-on
for OMNeT++ which allows the simulation of TinyOS-based
sensor networks in OMNeT++ (http://www.tinyos.net/). It
does not come with any additional functionality but acts as
a language translator between two different environments
(TinyOS and OMNeT++).

Global mobile information system simulator (Glo-
moSim) [15] is a library-based general purpose, parallel
simulator for wired and wireless networks written in Parsec
(http://www.pcl.cs.ucla.edu/projects/parsec/) (C-based dis-
crete event simulation language for parallel programming).
Being parallel, it is highly scalable and can simulate up to
10 000 nodes [5]. Using GlomoSim requires learning the
new language Parsec. GlomoSim is superseded by QualNet
(http://www.scalable-networks.com), a commercial network
simulator and is not released with updated versions since
2000. However, sQualNet [16], an evaluation framework
for sensor networks, built on the top of QualNet has been
released recently.

OPNet Modeler is a commercial, well-established (1986),
general purpose, object oriented simulation environment
written in C++ (http://www.opnet.com). It supports dis-
crete event, hybrid, and analytical simulation. It provides
a very rich set of modules for all layers of protocol stacks
including the IEEE 802.11 family, IEEE 802.15.4, and routing
protocols like AODV [17], and DSR [18]. Each level of the
protocol stack has to be implemented as a state machine
but it is “difficult to abstract such a state machine from a
pseudo-coded algorithm” [19]. The authors in [19] compared
OPNet Modeler, GlomoSim, and NS-2 with a broadcast
protocol. The results show that the performance of NS-2 and
GlomoSim, and OPNet is barely comparable.

SENSE [9] is a sensor network specific, component-
based simulator written in C++ built on the top of COST
[20]. To address the issue of scalability, SENSE provides an
optional way for parallel simulation as is done in GlomoSim.
It provides a small library of module implementations like
AODV and DSR, with simplistic battery and power models;
but unlike PAWiS, it does not provide a detailed structure
to capture energy consumption of different hardware and
software components. It also lacks a visualization tool which
is helpful in debugging and visual inspection.

Ptolemy II [21] is a component assembly-based software
package to study concurrent, real time, and heterogeneous
embedded systems and is written in Java. Ptolemy II provides
a rich support to model, simulate, and design components
in different domains (e.g., discrete time or component inter-
action), but according to recent Ptolemy II 7.0.beta release
notes, its wireless domain is still in experimental phase

(http://www.ptolemy.berkeley.edu/ptolemyII/). VisualSense
[22] is an open source WSN visual simulation framework
built on Ptolemy II.

J-Sim [23] is a general purpose, component-based, open-
source simulation framework written in Java. It is glued to
different scripting languages with TCL/Java and hence is a
dual language framework like NS-2. Initially, designed for
wired networks, its WSN specific package provision supports
only 802.11 MAC scheme and some high-level models, for
example, battery, CPU, wireless channel, and sensor channel.

Various WSN specific simulation and emulation tools
have been released in the previous years. These tools
include TOSSIM [24], EmStar [25], and ATEMU [26]. The
advantage of using such tools is that the code that is used
for simulation/emulation also runs on the real node (with
minor modifications) reducing the effort to rewrite the
code for the sensor node and giving detailed information
about resource utilization. The main problem with such
frameworks is that “the user is tied to a single platform
either software or hardware (typically MICA motes), and to
a single programming language (typically TinyOS/NesC)” [5].
Tython [27] and PowerTossim [28] are extensions of Tossim
to capture the dynamic behavior of environment and power
consumption, respectively.

In contrast to many of the above frameworks, the
PAWiS simulation framework meets all the key properties
outlined in [5]. It also utilizes the powerful GUI support
of OMNeT++, it utilizes the widely used scripting language
Lua to include environmental dynamics and mobility, and
to reduce the test-debug cycle (http://www.lua.org/). It
focuses on capturing energy consumption at hardware and
software levels, provides a visualization tool to analyze
energy consumption, a rich library of modules to get an
optimized protocol stack, standardized interfaces to improve
reusability, and provides a simulation template for the user
to jump start any simulation study.

3. SIMULATION FRAMEWORK

A wireless sensor network is built of independent nodes
which communicate via an ad hoc wireless network. The
PAWiS simulation framework is designed to model, simulate,
and optimize both the wireless communication protocols
as well as the interior of the nodes. Each node is built as
a virtual prototype in a way that its function, timing, and
power consumption as well as system failures are simulated
at any level of detailedness.

3.1. Methodology

The design of a WSN and its nodes follows a top-down
approach embedded in a cyclic process. The functional spec-
ification defines requirements of the WSN which apply to the
architecture as well as to the implementation. The imple-
mentation on the other hand imposes constraints on the
architecture and the functional specifications in a bottom-
up manner. For example, the functional specification of a
tire pressure monitoring system (TPMS, see also Section 6.2)
may require the sensors to measure the current pressure



4 EURASIP Journal on Embedded Systems

every 20 seconds. Due to the power consumption of the
current sensor technology and the available battery capacity,
the implementation of a TPMS sensor node imposes the
constraint that this function can only be maintained for 2
months, which is rather short compared to the lifetime of a
tire.

3.1.1. Work flow

To design a WSN and its nodes, the functional specification
is defined. For a full optimization, the work flow is a cyclic
application of the following steps.

(a) Every node typically consists of multiple submodules.
In this step, the node structure is defined and
for every module type a certain implementation
is chosen (composition). Initially, the modules only
need to meet minimum functional requirements.
For instance, for the aforementioned TPMS node,
the user chooses a CPU, a pressure sensor, an AD
converter, a timer, an RF transmitter, and memory.
Additionally, software modules like the network stack
and sensor handling are required.

(b) The modules chosen in the previous step are inte-
grated. Their interfaces have to be adopted and
their functions must be coordinated. For example,
the chosen pressure sensor might require special
treatment for its power-on sequence, which must
be implemented accordingly in the module which
operates it.

(c) The modules are configured, that include setting
values for the clock frequency of the CPU, the
resolution of analog-to-digital converters (ADCs),
and so forth.

(d) In the previous steps, a fully functional model of a
node and of the network was set up and is simulated
in the current step.

(e) The simulation results are evaluated. This includes
the verification of the function, analysis of the power
consumption and timing, and detection of potential
for further optimization (see Section 5).

(f) The issues identified in the previous step are con-
sidered for a refinement of the models as well as the
design. Examples are increasing the detailedness and
accuracy of power consumption and timing, dividing
the functionality into more elaborate modules, con-
figuration changes, and even a modification of the
node composition by exchanging module implemen-
tations. The chosen pressure sensor might consume
too much energy in every measure cycle due to its
long-lasting power-up sequence, and hence should be
exchanged by a sensor with faster startup. Another
example is the physical layer model (including the RF
transceiver) which might need a refinement of the
power consumption reporting during intermediate
states (e.g., when switching from transmit to receive
mode) (see Section 3.3.8). With the refined node
implementation, the procedure is started over again,
until the optimization goal is achieved.

These refinement cycles are the main track to enhance the
development and design [3]. After completing the opti-
mization process, the final outcome comprises the verified
function, the architecture of the node, the implementation
details, and the power specification of every module.

The module library (see Section 4) is particularly
intended for the composition and integration of modules
to a node. It provides a collection of multiple module
implementations for every module type which can be com-
bined in numerous ways. The integration effort is minimized
because these modules conform to the interface specification
(Section 4.2).

3.1.2. Optimization

Several strategies for the optimization of WSN nodes are
proposed in [3]. The PAWiS simulation framework is
especially constructed to assist the designer in applying these
strategies.

(i) System-level optimization involves a modification of
the whole system behavior like choosing a different
network layout or application patterns.

(ii) Exchanging the module implementation is done by
selecting a different module from the library. For
example, choose a dual-slope, a ΣΔ or an successive
approximation ADC. Another example is to change
a communication layer implementation (e.g., use
another medium access (MAC) protocol).

(iii) Another strategy is exchanging multiple module
implementations for adjacent modules that tightly
work together. While modifying a single module
might degrade the node performance, the interaction
of the changes of multiple modules potentially leads
to an overall improvement.

(iv) Cross-layer optimization works on more than one
network layer where, for example, modifying the
routing protocol benefits from a different physical
layer.

(v) Partitioning of modules and/or functions is done by
dividing the task between hardware and software,
digital and analog, or RF and baseband. For example,
a specific MAC protocol could be implemented in
software, as dedicated hardware acceleration unit, or
a combination of both.

(vi) Another strategy is scaling a module, for example, the
resolution of an ADC or the register count of a CPU.

(vii) Parameterization of modules, for example, the tim-
ing, transmission power, and bit rate of a radio
transceiver.

3.2. Structure

The PAWiS simulation framework is based on the
OMNeT++ discrete event simulator [11] which is written in
the C++ programming language (Figure 1). A discrete event
simulation system operates on the basis of chronological



Johann Glaser et al. 5

consecutive events to change a system’s state. These events
are processed by the simulation kernel. The simulation time
itself does not progress continuously but is advanced with
each occurring event (hence it is not possible to issue events
that are scheduled before the current simulation time).
The proposed framework handles timing-related issues
according to this discrete event mechanism.

User-defined models are implemented as C++ classes and
mostly utilize framework concepts. The user of the frame-
work is only confronted with OMNeT++ to comprehend the
simulation process. Node composition and network layout
along with environmental and setup parameters are specified
in configuration files as well as script files (see Section 3.4).
The modules are compiled and linked with the simulation
kernel, and result in the simulation application. This offers
a GUI-based frontend which enables visual debugging of
the communication processes of the model on a per-event
basis at simulation runtime. An optional command line-
based frontend can be utilized for increased simulation
performance.

The framework is primarily focused on simulating inter-
and intranode communication. Additionally, fine-grained
aspects (e.g., CPU instruction set emulation as used by
[26]) can be easily modeled with user extensions. However,
a tradeoff between simulation details and execution per-
formance (as discussed in [29]) has to be considered with
increasing quantity of network nodes.

A promising feature is the possibility to use SystemC
in combination with OMNeT++ (http://www.systemc.org/).
This is achieved by combining the OMNeT++ simulation
kernel and the SystemC simulation kernel in a way that
events from OMNeT++ and SystemC are being processed
together. This also allows the communication between both
domains. OMNeT++ allows the use of a custom scheduler
which is the central point to merge the messages and events
of OMNeT++ and SystemC, respectively. Unfortunately, the
OSCI SystemC kernel does not offer such an interface, so
slight modifications in the source code were necessary.

Simulation results comprise timing and power con-
sumption profiles as well as event records. The completed
model itself contains information regarding the functional
description and architecture specifications along with low-
level implementation details.

3.3. Basic concepts

3.3.1. Modularization

A wireless sensor node is typically composed of multiple
modules (e.g., CPU, timer, radio, network layers). Internally,
every module is based on one or more tasks. The framework
defines two types of tasks. One type models a hardware
component (e.g., a timer, an ADC) whereas the second type is
a software task, for example, application, routing, MAC, and
physical layer. Every module is implemented as a C++ class
derived from a framework base class. Tasks are implemented
as methods within a module class. The execution of a single
task is sequential but all active tasks are running in parallel.
This form of concurrency is implemented as cooperative

multithreading, where the program flow is suspended within
a method when certain framework calls are made (e.g., to
wait for some condition to be satisfied) and will continue
execution after being dispatched again. This process is
transparent for the user and is entirely handled by the
framework.

Basically, the detailedness and granularity of the sensor
node model strongly depend on the design and simulation
requirements for hardware and software modules and are not
restricted by the PAWiS framework.

3.3.2. Functional interfaces

Control flow transitions between two modules are specified
by the so-called functional interfaces (FI). They can be
thought of as subroutines with well known names and
parameter specifications. An invocation of an FI is similar
to a blocking subroutine call but may exceed the module
boundary. The framework allows the passing of arguments
to and from FIs. In the model, FIs are implemented as class
methods (similar to tasks).

A collection of FIs grouped together under a well-
known name can be thought of as a functional module-
type description. This introduces a level of abstraction in
the functional design process and hence enables reusability
of functional design. Two modules that are completely
satisfying the specification regarding their FIs can be said to
be functionally equivalent (although they might have entirely
different power consumption and timing profiles). This
approach is utilized in the module library (see Section 4).

3.3.3. CPU

As already mentioned in Section 3.3.1 tasks can either model
hardware or software. Software tasks of sensor nodes are
executed by a CPU. It is important to note that multiple
software tasks cannot run in parallel, since typically only one
CPU is available and supported by the framework. The CPU
module of the framework ensures that only one task’s code
simulation is executed at a time.

To model the power consumption and timing behavior
of software tasks, the PAWiS simulation framework splits
the simulation into two parts. The functional part is
implemented in the C++ method of the task. The timing and
power consumption part, on the other hand, is delegated to
the CPU module which maintains its power consumption
and delays execution of the software task for the calculated
processing time (the time that the code execution on the
CPU would take). This means that the whole functional part
is executed at the very same simulation time instant. The
model programmer has to insert special framework requests
to the CPU module to simulate the execution time and power
consumption.

These requests include the estimated execution time of
the firmware code on the CPU. Now think that the CPU
of a given node should be replaced during the optimization
process. This would also require to modify all execution
time estimates in all modules of the node. To allow for a
CPU exchange without the need to adapt other modules the



6 EURASIP Journal on Embedded Systems

Programmer

Model

CPU Power
management

Sensors Misc Radio

Air

PAWiS framework

OMNeT++ SystemC

C++

Executeable simulator GUI

Figure 1: Structure of the PAWiS simulation framework.

execution time estimates are referred to the so-called norm
CPU. This is an imaginary but well-defined CPU implemen-
tation (regarding its performance). The actual CPU model
scales its processing time and power consumption according
to its individual properties. For higher accuracy, the CPU
request also supplies the percentage of integer, floating point,
memory access, and flow control operations.

Many microcontrollers used for WSN nodes have CPUs
which offer special low-power modes. The PAWiS simulation
framework also supports modeling of these states. This
is done by pausing code execution and setting the power
consumption of the CPU module to a lower value. To exit
the low-power mode an interrupt can be issued.

3.3.4. Timing

Modeling time delays differ whether they occur in firmware
or hardware modules. For hardware modules the framework
provides a simple wait method to suspend execution for a
certain amount of time. Several distinct implementations of
the wait method are available with support for fixed and
conditional timeouts.

Using wait is not valid for software tasks because it is
not possible to wait and do nothing in software (even for an
infinite loop without body, the CPU does something). In fact,
if delays are needed in software, the corresponding module
has to use a loop (or a similar construct) to wait for a certain
time and therefore utilize the CPU to achieve the delay. The
framework offers a variety of methods to utilize the CPU for
timing and flow control purposes. Alternatively the CPU can
be put to a low-power mode which stops execution too and
therefore delays until an external or timer event occurs.

An important consequence of this timing model is
that consecutive user code lines without a wait call or a
CPU utilization request take place in the same simulation
time instant (i.e., no simulation time elapses during that

code execution). Simulation time only advances when these
special methods are invoked.

3.3.5. Interrupts

The framework provides a basic mechanism to model
interrupt handling in a two-step process that maps

(i) interrupt sources to interrupt vectors; and

(ii) interrupt vectors to interrupt service routines.

Whenever an interrupt request is issued, the framework
handles the necessary task scheduling according to the
interrupt priorities and the currently running task.

The implemented interrupt model supports several user
configurable interrupt sources (potentially coming from
different modules, e.g., a timer, an analog-digital-converter,
etc.). Each of these sources is mapped to an interrupt
vector. Additionally, it is possible to map multiple sources
to one specific interrupt vector. Furthermore, every vector
maintains a priority and an interrupt service routine (ISR).
As the model allows multiple vectors to share one ISR, the
framework provides means to identify the triggering vector
from the ISR. The framework’s CPU module entirely handles
the interrupt processing except for prioritizing of interrupt
vectors that needs to be provided in the user model by
overriding the CPU base class.

The user can register ISRs for interrupt vectors within
software modules. When interrupt sources trigger interrupt
requests, the CPU module determines the appropriate inter-
rupt vector, checks its priority, and if appropriate transfers
control to the ISR (which is always a software task). In
case of a control transfer, the currently executed CPU task
is preempted and continues execution after the ISR has
finished.



Johann Glaser et al. 7

User interactivity
Energy

Light source

RF-channel

Environment
properties

Node
properties

Temperature Vibration
Environment

Sensor node

Position
thickness
material
Obstacle

Velocity
direction
Dynamics

Figure 2: The Environment with properties, objects, and sensor nodes.

3.3.6. Environment

All sensor nodes are placed at 3D positions within the
environment. This is a representation of the outer world and
surroundings of all nodes including the RF channel.

Besides the nodes themselves, additional objects like
walls, floors, trees, interferers, heaters, light sources,
global properties (e.g., the attenuation exponent b (see
Section 3.3.7)), and more are defined within the envi-
ronment. The entire environment can be configured with
configuration and scripting files.

3.3.7. Air

The air is an essential part of the environment to handle the
RF channels, which are defined by 3D node placement in
space and obstacles between the nodes. A real RF signal is
subject to wave propagation phenomenons like attenuation,
reflection, refraction, and fading (multipath propagation)
from the transmitter to the receiver. In the PAWiS simulation
framework, these effects can be modeled but currently we use
a distance-based path loss radio model, which only considers
the distance between transmitter and receiver.

The packet transmission is modeled without the defini-
tion of a predefined topology (similar to a wired network).
Instead of that, every RF message is transmitted to all
other nodes and the received RF power is calculated from
the transmitter power, antenna properties and especially
the distance and obstacles between the transmitter and
the receiver. The topology of the network results from the
reachability between nodes which is limited by the minimum
received signal quality.

Signal power

The received signal power of a node is proportional to the
transmitter power, only scaled by wave propagation effects
and node properties. These constant attenuation factors

between all nodes can be conflated to a matrix which is
referred to as adjacency matrix within the framework. A
simple row multiplication is used to calculate the received
signal power for all nodes. The matrix is a precisely defined
interface from the Environment setup (i.e., node positions,
obstacles) to the data communication. Therefore, it can also
be calculated by an external RF channel simulation tool.

The current implementation of the Air supports only
isotropic antennas with uniform antenna gain. Obstacles
are considered for the adjacency matrix by explicitly given
additional attenuation factors between pairs of nodes in the
Environment configuration.

Packet transmission

Whenever a data packet is transmitted by a node, the Air
calculates the received signal power for all other nodes and
notifies every node (above a certain threshold) about the
start of the transmission. The nodes confirm the acceptance
of the data packet, if their receiver is currently in listen mode
and if the signal power is above the sensitivity threshold.
During the transmission, the receiving nodes calculate the
signal-to-noise ratio (SNR) between the received signal
power Psignal and the received and internal noise power
Pnoise : SNR = Psignal/Pnoise.

From this SNR, the bit error ratio (BER) is calculated,
which is a function of the SNR depending on the (fixed)
modulation format (the formula can be provided by the
user). From the BER and the bit length of the transmission,
the bit error count is calculated. Consequently, the user’s
module decides whether the received packet is valid or treats
it as corrupted.

From the size of the transmitted data packet and the bit
rate, the Air calculates the duration for the transmission. At
the time when the transmission is finished, the Air notifies
all receiving nodes again. This notification contains the user
data, its length, and the number of bit errors. Additionally,
as some protocols decide whether to process an incoming



8 EURASIP Journal on Embedded Systems

packet after the arrival of some header fields, the framework
provides a mechanism to stop listening to a transmission
after a specified number of bits have arrived.

Collisions

If a node starts to send a packet while another packet is
already being transmitted, this second signal is uncorrelated
to the first sender. The framework models this signal as noise
and therefore decreases the SNR at the receiver of the first
packet. Such events can happen several times during the
reception of a data packet, therefore the receiver has to deal
with changing SNR throughout the packet receiving process.
The final count of bit errors thus results from this sequence
of different SNR values and is assembled from the portions
of constant SNR. So the bit errors are accumulated for all
portions of the packet with constant SNR. The user has to
provide the method to calculate the bit error count for a
constant portion of SNR, everything else is handled by the
framework.

Multiple access

To utilize the RF communication by multiple participants,
three multiple access methods are supported. For separate
services, it is likely to utilize different frequency bands (e.g.,
the 2.4 GHz ISM band and the 868 MHz ISM band). Within
these bands, a separation using dedicated frequency channels
(frequency division multiple access, FDMA) is typically
implemented to increase the number of node sending in
parallel. The same purpose is served by overlaying the RF
signals in time and frequency domain but coding these
with different keys (code division multiple access, CDMA).
These three multiple access schemes are generalized by the
framework. The user provides a function to implement
the adjacent channel interference which handles the filter
suppression ratio or the coding gain. This is incorporated
by the Air to calculate signal and noise power and conse-
quently the SNR. The other two common multiple access
formats, space and time division multiple access (SDMA,
TDMA) are supported trivially due to the principle of the
Air.

3.3.8. Power simulation

A key feature of the framework (regarding PAWiS require-
ments) is given by the power consumption simulation of
tasks. Therefore, a central power meter object logs the power
consumption values that are reported by all modules of all
nodes. Only tasks that simulate dedicated hardware directly
report power consumption. Software tasks report their
CPU utilization, and the CPU module calculates its power
consumption and reports it on behalf of the requesting task.

Every hardware task that consumes power reports this to
the central reporting facility. It can have different electrical
behavior, that is, the current I depends in different ways
on the supply voltage U . The current can be constant and
therefore independent of the supply voltage. A resistive
behavior (I = U/R) and a combination (I = Iconst +

U/R) can be modeled. Additionally, a user defined, for
example, nonlinear characteristic can be implemented and
is supported by the framework. The power consumption as
well as the electrical behavior can be updated by a task at any
point in time.

The reporting of power consumption is accomplished by
calls to special methods offered by PAWiS framework classes.
The model programmer has to provide the appropriate
figures (current, equivalent resistance). These numbers can
be determined in several ways. The most accurate numbers
result from measurements of real-world devices (e.g., a test
chip or prototype PCB) which should be modeled with
the PAWiS framework (though this requires the device to
be already available). Alternatively the user can obtain the
consumption parameters by electrical simulations of the
circuitry using, for example, Spice. This is particularly inter-
esting if the model is programmed in parallel to designing
the chip of the planned module. For commercially available
components (e.g., a microcontroller or RF transceiver) the
data sheet provides the appropriate power consumption
values.

It is important to mention that modules of a sensor node
do not consume constant power throughout their lifetime.
On the contrary, the power consumption varies with the
operating state. For example, the CPU consumes less power
when being in sleep mode (and hence does not execute
instructions), the power consumption of the radio differs
whether in transmit, in receive, in PLL-locked or in idle
mode. The model programmer has to report new power
consumption figures every time the state of the module
changes.

The framework supports the modeling of a supply
hierarchy where the power input of a module (e.g., an
ADC), is supplied by the power output of another module
(e.g., an LDO). Since a power supply has varying efficiency
according to load and input voltage as well as nonzero output
resistance, its output voltage and internal consumption are
calculated from its output current. This output current is
the sum of all supply currents of the supplied modules.
Additionally, the framework provides a mechanism to specify
different power supply behaviors (particularly the output
resistance). This power consumption model results in a
simple electrical network.

During the simulation, a task calculates its current,
reports this to its power supply and is notified about
the actual input voltage by the power supply in return.
Most of this is handled automatically by the framework.
This mechanism recursively propagates up the supply tree
(breadth-first) and is finally reported to the central power
meter which stores this values to an external data file. In
this way for every module and task of every node in the
simulated WSN, the power consumption is calculated and
logged. With this approach, the power consumption of the
whole node is covered and the simulation results plausibly
reflect the reality. These results are analyzed and visualized
by the data postprocessing tool (see Section 5). So the
power simulation values are not actively evaluated during
the simulation run but analyzed after the simulation is
finished.



Johann Glaser et al. 9

3.4. Dynamic behavior

The PAWiS framework supports dynamic behavior (e.g.,
mobility, environmental dynamics) via an embedded script-
ing language. Generally, scripting languages are platform
independent and need a virtual machine for execution.
Although, it degrades execution time compared to compiled
languages, it enables code adjustments and algorithm tweaks
even at runtime. Scripting languages can be considered as
high-level languages as they usually feature dynamic typing,
implicit memory management (garbage collection), and
often multithreading or support for coroutines intrinsically.
An application utilizing an embedded scripting engine needs
to provide glue code in order to make internals accessible via
scripts. (Glue code is code that does not provide additional
functionality but “glues” application specific objects or func-
tions to the scripting engine.) For the PAWiS framework,
the scripting language LUA [30] has been chosen due to its
simplicity, extensibility, widespread usage, large community,
fast execution, and maturity (http://www.lua.org/).

A large portion of the PAWiS framework’s basic func-
tionality is glued to the scripting engine. A main part com-
prises the module’s flow control and power consumption
functionality which enables the user to provide functional
interfaces entirely in the scripting language. This is intended
to serve as a rapid prototype development scheme without
the need to re-compile the entire simulation. Scripts can
be hooked to various events fired by the framework, for
example, for set up purposes scripts can be hooked to
node or network creation events. Usually simple topologies
can be setup with the OMNeT++ intrinsic Ned language
but more complex topologies can be created utilizing these
initialization scripts with less effort. PAWiS scripts can be
used to interface with the framework on network-wide and
intranode levels during runtime or in the network setup
phase.

A real-world scenario for the necessity of introducing
dynamic behavior of sensor nodes is shown in Figure 3
where two cars are passing each other. Each car is equipped
with a WSN and both networks affect each other when
they come close. In order to simulate and observe this
simple yet realistic scenario, it is necessary that the two
networks can be moved at a certain velocity and in some
direction during runtime. This is achieved by grouping
the nodes in two distinct networks and then moving these
groups via a script in opposite directions. When sensor
nodes change their position in space, the PAWiS framework
automatically handles the respective change in the network
connectivity and the signal strengths without the need of
user intervention (i.e., no method needs to be called to
update the adjacency matrix). Accordingly, the radio model
is rendered dirty and recalculated when the next activity on
the air occurs.

Besides mobility, scripting is useful to handle dynamic
and reproducible effects that occur within the sensor net-
work’s environment [27]. Generally, sensors (even simulated
ones) need to monitor a certain phenomenon. Although the
PAWiS simulation framework does not provide a detailed
model to capture phenomena (e.g., humidity, and lumi-

Figure 3: Two cars equipped with wireless sensor networks passing
each other.

nance), it defines an abstract interface for sensors and the
environment. This sensor/phenomenon pair is handled like
a typical subscriber/producer pattern. Sensors subscribe to
a phenomenon to get it’s current value and will be notified
of changes instead of frequently polling the phenomenon
thus reducing the computational load. The timing behavior
of the notification can be set up (e.g., an update frequency
or whenever a significant change of a phenomenon’s value
occurs) for each sensor individually. Sensor properties
maintained by the framework are the position of the sensor
and its orientation in 3D space. Whenever a sensor reads its
associated phenomenon’s value, these properties affect the
reading as they define the distance and whether the sensor
is facing the value’s source.

The semantic of the environmental values has to be
introduced by the user of the framework. Though this can
be done with C++, it is recommended to use scripts for
the environment model as it is more portable and can
be exchanged easily for a simulation run. With the help
of scripts, even complex environmental scenarios can be
easily modeled and simulated. Additionally, the framework
supports the usage of prelogged data that can be used
as values for phenomena. Currently, effects of interest
within the intended field of application for the framework
comprise day and night cycles, season changes, weather
conditions, and phenomena that support energy scavenging
mechanisms.

Utilizing scripting for environment and phenomena as
mentioned above introduces reproducible pseudo realistic
(opposed to pseudorandom) values to the simulation. While
further methods to support more accurate and realistic
values exist some of them come up with inherent drawbacks
(at least for the targeted field of application). The EmStar
[25] framework has the ability to use a hybrid simulation
scheme to provide realistic sensor readings. This means that
it uses real-sensor readings as input for the simulation.
While this brings real-world values into the simulation,
it cannot be reproduced over multiple simulation runs.
Furthermore, it is not possible to simulate large-time spans,
for example, when season-dependent effects need to be
considered or the intended network lifetime is up to a year or
more.



10 EURASIP Journal on Embedded Systems

Application layer

Applications

Transport layer

Network layer

Link layer

Physical layer

N
od

e
m

an
ag

em
en

t

Se
rv

ic
es

D
at

ab
as

e

Sc
h

ed
u

lin
g

A
lg

or
it

h
m

s

Se
rv

ic
es

K
ey

m
gm

t.

C
ro

ss
la

ye
r

m
an

ag
em

en
t

E
n

er
gy

m
an

ag
em

en
t

Se
cu

ri
ty

m
an

ag
em

en
t

Figure 4: WSN protocol architecture.

4. MODULE LIBRARY

The implementation within a module has to meet the
specification of the functional interfaces according to the type
of the module. This forms another key idea of the modeling
process, that is, to provide a library with various distinct
implementations for a specific module type. The resulting
library can be used to evaluate, refine, and test architectural
issues of the user’s model. We provide a module library
for the proposed protocol architecture (see Section 4.1).
These modules can be used in any combination to get
an optimized protocol stack for a particular application.
Protocol architecture and standardized interfaces (discussed
below) make it easy to integrate new modules or interchange
different implementations to get optimized results.

4.1. Protocol architecture

The wireless communication characteristics (mobility,
rapidly changing link quality, limited resources, and
environmental obstructions) and new design paradigms
(e.g., wake-up radio) motivate to divert from traditional
layered architectures. At the same time “plug and play”
like features of the layered architecture are important for
extensibility and interchangeability.

We define a protocol architecture [31] which provides the
benefits of traditional layered architectures [32] and focuses
on exploiting synergy across layers (e.g, to extend network
life time) [33]. The proposed architecture (see Figure 4)
comprises traditional layers (application, transport, network,
link, and physical layer) with management planes (cross
layer, energy, security, and node). All layers and planes are
connected through well-defined interfaces.

The cross-layer management plane (CLAMP) [4] pro-
vides a mechanism to exchange cross-layer information but
in an optional way that the concept of modularity of layered
architectures is still maintained. The CLAMP provides a
rich set of parameters available to all the modules of the

protocol stack by a publish-notify-update-query mechanism.
A discussion of benefits when using cross layer information
can be found in [4, 34].

Limited energy sources (e.g., AA battery), insufficient
energy from scavenging techniques [35], and the difficulty to
replace batteries (cost and geographic reasons) motivated the
introduction of an energy management plane (EMP). The
EMP can be used to implement algorithms (e.g., [36]) to
compute remaining battery capacity or to schedule different
events (e.g., updating timers, periodic listening) in order to
save energy.

Generally, security is not considered as integrated com-
ponent of the system architecture (at the start) which affects
network security adversely [37]. A security management
plane (SMP) is included so that security-related issues
(key management algorithms, light-weight encryption and
decryption, etc.) can easily be integrated into every compo-
nent as discussed in [37]. Additionally, network diagnosis
and management (NM) used for resetting nodes, remote
firmware deployment, address assignment, querying the
availability of the node, and so forth, are introduced.

4.2. Interfaces

Standardized interfaces (see Figure 5) between different
protocol layers and management planes expedite the process
of new module integration and module interchangeability
and hence reduces the overall design time. We kept the
interfaces small in number and simple to reduce the com-
munication overhead between layers and avoid complexity.
Each interface has its own syntax and semantics. The user-
defined interfaces can also be used if required. Figure 5
shows the unified view of the protocol layers, management
planes, and interfaces among them. The advantage of such
interfaces is that it makes the development of protocol layers
independent from one another and at the same time provides
the functionality to exploit synergy between different layers
for cross-layer optimization benefits. Detailed information
about the interfaces can be found in [31].

5. DATA POSTPROCESSING

A data postprocessing tool (DPPT) was developed to analyze
and visualize the information (power consumption, timing,
events, and module interaction) logged during the simula-
tion run. The DPPT (see Figure 6 for a screenshot) along
with the PAWiS framework runs on Linux as well as Windows
platforms. The DPPT visualizes the simulation results in a
hierarchical way by network nodes, modules, submodules,
and user-defined categories (e.g., the user can visualize
energy consumed by the whole node or by one of its modules
like routing or MAC). Each of these elements can be shown
or hidden. Elements can be presented in different display
colors to be distinguished in the graph. Several navigational
helpers (e.g., panning, zooming, scrolling, and snapping) are
provided to navigate the simulation data. The DTTP also
provides operations on data rows like integration of power
consumption, and so forth.



Johann Glaser et al. 11

SMP

Key mgmt.
Encryption
Decryption

Node management

AL
Receive Send

RLReceive Send

Receive Send

Receive Send

Send Listen Carrier sense Set power mode

ML

Send Listen Carrier sense Set power mode

PL

On change

CLAMP

Subscribe

Notify

Query

Publish

Update

CLAMP
database

CLAMP
services

EMP

Functional interface

Functional call

Mandatory

User-defined

Figure 5: Interfaces between different layers and management planes.

Test-1
0 ps

Test-2
200 s

Test-3
400

(m
W

)

100 107.715 mw

298.543 s
Supply:
Solar cell:
Led:
Battery:
Source:
Tb supply:

0.021 mW
−36.327 mW
0 mW
−4.958 mW
41.286 mW
41.265 mW
41.286 mW

0

Figure 6: Data postprocessing tool.



12 EURASIP Journal on Embedded Systems

The functions of the DPPT are divided into two cate-
gories, analysis and visualization of the data. The analysis
techniques include the following:

(i) power consumption;

(ii) energy consumption (integral of power consumption
over time);

(iii) reveal network topology from routing tables;

(iv) calculate remaining battery capacity from power
consumption;

(v) sum of power consumption of a certain module type
of all nodes;

(vi) statistical analysis of end-to-end packet delay, num-
ber of retransmissions, unnecessary CPU wakeups,
and more;

(vii) power and/or energy consumption distribution
across several nodes.

The analysis results are visualized by the following:

(i) chart (pie, bar, stack, etc.);

(ii) tables (showing numbers);

(iii) 3D maps (power and/or energy consumption distri-
bution);

(iv) vectors (network topology, routing decisions).

The main display as shown in Figure 6 is the power
consumption of the modules of a node plotted over time. The
individual power values are stacked and colored according to
the module. As the user moves the mouse, an overlay shows
the power values at the cursor.

One major difficulty for displaying the data is the high
dynamic range of values and times. For WSN nodes, it
is typical that within a very short time interval many
events (and therefore changes in power consumption) occur
followed by a long period of no actions. The user would
have to constantly zoom in and out to inspect the points of
interest. The same problem applies to power consumption
values, for example, the power consumption of the RF
transceiver is higher than the consumption of the AD
converter by a factor of several hundreds. We tackle this
visualization problem by applying a non-linear monotonic
concave function (e.g., the logarithm) to the time and/or
value differences. (We do not transform the absolute time
and sum of power values (as for logarithmic plots) but
the differences from one discrete event to the next.) This
reduces the dynamic range of the differences while equal
time intervals and power values are displayed equally at every
absolute point.

6. RESULTS

In this section, we present a performance evaluation of the
PAWiS framework as well as a case study to show its benefit in
designing, simulating, and optimizing real-world scenarios.

Table 1: Performance results for different network sizes.

Nodes Sim s/s Event/s

20 207.6790 32,808

50 52.8075 23,975

100 7.9105 16,666

200 2.6811 9,756

500 0.2249 4,025

1,000 0.1278 2,298

6.1. Performance evaluation

To get performance figures, we abstracted an application
layer by probabilistic sampling based on uniformly dis-
tributed intervals (a node waits between 20 to 70 seconds
and then sends data with a probability of 20%). A position-
based routing scheme (a scheme which forwards data based
on location of the immediate source, the node itself, and
that of the destination node) which maximizes progress
(minimizes distance) towards the destination node was
implemented on the routing layer. At the MAC layer, a
simple CSMA/CD (carrier sense multiple access with colli-
sion detection) scheme was implemented. A linear battery
discharge model and a first-order radio model was used.
Many to one communication was considered where all the
nodes send data to the sink node located at the center of the
network area. Multiple simulation runs with various network
sizes and approximately equal node density were made
for the performance evaluation. The network nodes were
distributed on a grid with a jitter around the grid positions.
Scripting was only used to set up the network and simulation
environment, but no dynamic effects during simulation
runtime have been implemented. The used simulation model
put more emphasis on higher-level effects (on protocol
level) than on intranode communication or instruction set
simulation. For the execution of each simulation run, a
common desktop PC equipped with an AMD Athlon 64 3000
CPU (2.0 GHz) and 1.5 GB of RAM has been used.

The simulation framework generates messages for a lot
of events that occur during simulation. These messages are
dispatched by the OMNeT++ simulation kernel. Therefore,
the number of messages (events) generated during a sim-
ulation run is a key figure of the performance evaluation.
An additional important figure constitutes the ratio between
simulated seconds and wall-clock seconds for each run.
These figures were acquired by simulating one million events
for different network sizes.

Table 1 shows the simulation results for 20, 50, 100,
200, 500, and 1000 nodes. It should be noted that for
this particular simulation configuration, the ratio between
simulation time and wall-clock time is just an example and
should not be seen as a general figure for any simulation.
More important are the figures regarding the processed
events per second. As the framework handles many aspects
of wireless communication, the duration for processing
events with lots of nodes increases significantly. This is



Johann Glaser et al. 13

related to the fact that the more nodes are simulated, the
more signal-dependent calculations have to be computed
at each sending operation thus resulting in less processed
events per second. Evidently, the node’s granularity (in terms
of hardware and software) additionally affects the overall
simulation performance. The finer grained a node is, the
more events are needed to simulate one node which further
drops the ratio between simulation time and wall-clock time.

In principle, a finer model granularity results in an
increased number of OMNeT++ modules and submod-
ules. OMNeT++ supports parallel discrete event simulation
(PDES) strategies to enhance overall simulation performance
but special measures need to be taken to ensure the syn-
chronization of modules on distinct processors thus reducing
the local simulation throughput. However to benefit from
PDES, the model needs to consider some message exchange
constraints to ensure the causality of events on distinct pro-
cessors. Currently, the PAWiS framework does not comply
with all of these constraints. Therefore, it is not yet possible
to utilize PDES in order to speed up the simulation (though
it is planned to make future versions of the framework PDES
compliant).

The performance figures for this particular simulation
show that with a network size of 500 nodes the simulation
time progresses slower than wall clock time which makes
it rather impractical to simulate larger networks over long-
time periods (e.g., simulating 30 days for 1000 nodes would
take 235 days!). As expected, these figures suggest that
the framework needs to process more events per second
and node with increasing network sizes. Though these
figures seem to be not very promising, it should be noted
that simulating this large networks at fine granularity is
of little practical use. If one wants to simulate at fine
granularity within one node, smaller network sizes also
help identifying functionality issues and inefficiencies. In a
second step larger networks may be simulated by omitting
implementation details which helps to reduce the number of
events. Moreover, simulating networks with sizes up to 30
nodes does better reflect currently commercially developed
sensor network applications.

A scalability evaluation in [13] targeting various aspects
of WSN simulation (some of them comparable to the PAWiS
framework) with OMNeT++ confirms the above-mentioned
figures and conclusions. The authors showed performance
figures for WSN models with different complexities and sizes
(a full model contains radio, environment, and battery) and
finally conclude that simulating larger networks with current
approaches is not practical.

6.2. Case study

A case study of a WSN for a tire pressure monitoring system
(TPMS) in automobiles (as depicted in Section 3.4 and
Figure 3) has been modeled and simulated with the PAWiS
framework. The TPMS model consists of four wireless sensor
nodes and a sink node. Each sensor node is attached to a
different wheel while the sink node is placed in the central
console. All sensor nodes are battery powered whereas the
sink is connected to the car-power supply. Each sensor

periodically (every 20 seconds) reads the sensor values, and
in case of a significant change from previous readings (this
is modeled with a sending probability of 10%) it sends a
packet to the sink node. As the focus of this example is
not power awareness, the CPU never enters sleep mode
but permanently executes code from the application. If
the sink node receives the packet without bit errors, it
sends an acknowledgment back to the originator node.
At most, three retransmissions are attempted in case of
acknowledgment timeouts by the sender. A sensor node in
the model consists of modules for application, MAC and
routing, timer, and radio. The application module is further
divided into a sensor and an ADC for acquiring the tire
pressure. In this model, MAC (utilizing CSMA strategy)
and routing are combined as there is no explicit routing
needed. The simulation of this TPMS model shows the
power consumption of each of these modules. Resulting
data can be further analyzed to figure out major power
consuming modules and optimize them in order to increase
the network life time. Two application scenarios have been
simulated: the first scenario with a single car (consisting of
the four sensor nodes and one sink node) and a second
scenario including two cars within each other’s proximity
to observe the differences in power profiles of different
modules. The two-car scenario should show the impact
regarding power consumption and packet delivery ratio of
potential interferers (packets from the opposing car are
treated as noise) on the local sensor network in each car.
After simulating both scenarios, the aforementioned DPPT
(see Section 5) was used to integrate the power consumption
figures of all the modules. The results are shown in Figure 7
where the power consumption of a specific sensor node from
both scenarios is presented. As expected, the major part of
power is consumed by the application module (indirectly
as the CPU is actually consuming the power for software
modules) with almost the same value for both scenarios. The
sensor/ADC and timer modules contribute only with very
small amounts to the overall power consumption since they
are inactive for a significant portion of time. In the single-car
scenario, the radio and MAC/routing consumed significantly
less power than in the two-car scenario. This happens
due to the fact that an increased number of sensor nodes
within the vicinity of each other results in more network
collisions which raise the bit error probability. Furthermore,
bit errors result in packet retransmissions which additionally
keep the radio in listening state for a longer time to wait
for acknowledgments. The same applies for the MAC as
more occurrences of timeouts and retransmits have to be
processed.

We simulated this simple and straightforward case study
of a TPMS on purpose. It took only about 20 man-
hours to model and simulate the real world scenario from
scratch. Different scenarios were simulated (e.g., without
acknowledgments, moving cars, static single car, etc.) with
minor adjustments in the configuration file in less time. With
the framework, module inefficiencies can easily be identified
(the absolute figures may not be entirely accurate, although
relative information may provide a deep insight) and can also
be corrected in very short development cycles.



14 EURASIP Journal on Embedded Systems

0

2

4

6

8

10

12
(μ

W
)

One car
Two cars

Sensor/ADC
0.007
0.007

Radio
0.583
6.107

Timer
0.077
0.212

App
11.422
11.422

MAC/routing
0.028
4.603

One car

Two cars

0 5 10 15 20 25

(μW)

Sensor/ADC
Timer
MAC/routing

Radio
APP

Figure 7: Power consumption results of the TPMS simulation for
one node.

6.3. Optimization study

In this case study, we discuss the optimization methodology
for the development of a routing protocol with the PAWiS
framework. This study was aimed to develop and optimize
a table-less position-based routing protocol. Initially, we
created a skeleton model (the same as used for the study
in Section 6.1) for a simple node consisting of application
layer (probabilistic sampling), MAC layer (CSMA), and
physical layer (simple radio) as well as an implementation
of the initial version of a table-less routing scheme which
we call progress aware (PA). As the composition of the
protocol stack is easily managed with the configuration file
without the need to recompile the particular simulation,
we executed many trials with numerous node compositions.
After analyzing the simulation results, we identified several
enhancements and alternatives for various aspects of the
routing protocol. Consequently, multiple refinement cycles
with distinct implementations of the position based routing
strategy were applied. These strategies include PA, energy
aware (EA), PA and EA with Rts/Cts packet exchanges, PA
and EA with state of charge (SOC) packet exchanges, and
even hybrid approaches (to dynamically change between
progress aware and energy aware routing) to route packets.
First, the performance figures acquired in each refinement
iteration were analyzed to identify the main contributors
to power consumption in the routing layers. In the next
step, the gained insights were reapplied to the routing
implementations resulting in additional refinement/analysis
cycles until the results met the targeted power consumption
constraints. The chart in Figure 8 depicts the network life-
time for various implementations of position-based routing

1.4

1.2

1

0.8

0.6

0.4

0.2

0

N
et

w
or

k
lif

et
im

e

PA EA PA Rts/
Cts

EA Rts/
Cts

PA Soc EA Soc Hybrid

Figure 8: Network life time for various position-based routing
implementations.

compared to our initial version of a protocol that utilized a
PA scheme (with network lifetime scaled to 1 in the chart).
The chart shows that the EA scheme exhibits lower lifetime
compared to the PA scheme which can be perceived as a
contradiction. The reason for this is that in this scheme
packet forwarding is based on timers. For example, assume a
four-node network comprising a source node S, a destination
node D and two potential forwarders A and B. If S has
some data to transmit, it sends them blindly. A and B being
within transmission range of S receive them and start their
respective timers. The timer of the node which provides
maximum progress expires first (i.e., the timer of the node
with more remaining energy), and further forwards the data
while the other node upon listening to that data kills its
timer and drops that data. EA scheme always try to balance
energy consumption across nodes by routing through nodes
with more remaining energy, therefore, once energy balance
(all nodes having almost equal remaining energy) across the
network is achieved, duplicate packets occur as timers of
potential forwarders expire at the same time. These duplicate
packets cause the routing layer to utilize the radio more often
and hence drain the battery quicker which results in reduced
network lifetimes.

7. CONCLUSIONS AND FUTUREWORK

In this paper, we presented a power aware discrete event sim-
ulation framework for wireless sensor networks and nodes.
Based on OMNeT++, it provides additional features to cap-
ture energy consumption (at any desired level), introducing a
model for the RF communication (enabling complex topolo-
gies) and environmental effects with scripting capabilities.
It provides a visualization tool to analyze and visualize
energy usage. The framework focuses on extensibility and
reusability by outlining a protocol architecture and provides
module library. The results show that the performance
(execution time) of the PAWiS simulation framework is
comparable with other frameworks and appropriate for the
targeted field of application. The case studies showed that
the modularization of OMNeT++ models combined with
the abstract component concept of the PAWiS framework
generally results in a reduced design-debug cycle.

The framework in its current version handles already
much of the functionality and effects that are important for



Johann Glaser et al. 15

simulating wireless sensor networks. However, there are still
some extensions and features that need to be enhanced or
included. Performance of the simulation framework needs to
be further enhanced, as the current results show scalability
issues for larger networks (see Section 6.1).

Furthermore, an important aspect of the simulation
framework is the postprocessing tool chain. The visualization
tool will be extended by additional functions for analyzing
the output of the simulation application. Currently, the
output comprises power consumption, fired events, and
module occupation. Additionally, analysis tools will be
included to allow the comparison of nodes regarding various
properties gained from the simulation and features like
significant power peak detection, min-max over sliding
window, integration features.

Additional and updated information regarding the
PAWiS project and the simulation framework is available at
http://www.ict.tuwien.ac.at/pawis/.

REFERENCES

[1] D. Weber, J. Glaser, and S. Mahlknecht, “Discrete event
simulation framework for power aware wireless sensor net-
works,” in Proceedings of the 5th IEEE International Conference
on Industrial Informatics (INDIN ’07), vol. 1, pp. 335–340,
Vienna, Austria, June 2007.

[2] J. Glaser and D. Weber, “Simulation framework for power
aware wireless sensors,” in Proceedings of the 4th European
Conference on Wireless Sensor Networks (EWSN ’07), K. Lan-
gendoen and T. Voigt, Eds., pp. 19–20, Delft, The Netherlands,
January 2007.

[3] S. Mahlknecht, J. Glaser, and T. Herndl, “PAWiS: towards
a power aware system architecture for a SoC/SiP wireless
sensor and actor node implementation,” in Proceedings of 6th
IFAC International Conference on Fieldbus Systems and Their
Applications, pp. 129–134, Puebla, Mexico, November 2005.

[4] S. A. Madani, S. Mahlknecht, and J. Glaser, “CLAMP: cross
layer management plane for low power wireless sensor
networks,” in Proceedings of the 5th International Workshop
on Frontiers of Information Technology, Islamabad, Pakistan,
December 2007.

[5] E. Egea-López, J. Vales-Alonso, A. Martı́nez-Sala, P. Pavón-
Marñio, and J. Garcı́a-Haro, “Simulation tools for wireless
sensor networks,” in Proceedings of the International Sympo-
sium on Performance Evaluation of Computer and Telecommu-
nication Systems (SPECTS ’05), Philadelphia, Pa, USA, July
2005.

[6] S. Kurkowski, T. Camp, and M. Colagrosso, “MANET
simulation studies: the incredibles,” Mobile Computing and
Communications Review, vol. 9, no. 4, pp. 50–61, 2005.

[7] D. Wetherall and C. J. Lindblad, “Extending Tcl for dynamic
object-oriented programming,” in Proceedings of the 3rd
USENIX Annual Tcl/TkWorkshop, p. 19, Toronto, Canada, July
1995.

[8] V. Naoumov and T. Gross, “Simulation of large ad hoc net-
works,” in Proceedings of the 6th ACM International Workshop
on Modeling Analysis and Simulation of Wireless and Mobile
Systems (MSWiM ’03), pp. 50–57, San Diego, Calif, USA,
September 2003.

[9] G. Chen, J. Branch, M. Pflug, L. Zhu, and B. K. Szymanski,
“Sense: a wireless sensor network simulator,” in Advances in

Pervasive Computing and Networking, chapter 1, pp. 249–267,
Springer, New York, NY, USA, 2006.

[10] S. Park, A. Savvides, and M. B. Srivastava, “SensorSim: a
simulation framework for sensor networks,” in Proceedings of
the 3rd ACM InternationalWorkshop onModeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM ’00), pp.
104–111, Boston, Mass, USA, August 2000.

[11] A. Varga, “The OMNeT++ discrete event simulation system,”
in Proceedings of the 15th European Simulation Multiconference
(ESM ’01), pp. 319–324, Prague, Czech Republic, June 2001.

[12] W. Drytkiewicz, S. Sroka, V. Handziski, A. Koepke, and H.
Karl, “A mobility framework for OMNeT++,” in Proceedings
of the 3rd International OMNeT++ Workshop, Budapest,
Hungary, January 2003.

[13] E. Egea-López, J. Vales-Alonso, A. Martı́nez-Sala, P. Pavón-
Marñio, and J. Garcı́a-Haro, “Simulation scalability issues in
wireless sensor networks,” IEEE Communications Magazine,
vol. 44, no. 7, pp. 64–73, 2006.

[14] C. Mallanda, A. Suri, V. Kunchakarra, S. S. Iyengar, R. Kannan,
and A. Durresi, “Simulating wireless sensor networks with
OMNeT++,” submitted to IEEE Computers.

[15] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a library
for parallel simulation of large-scale wireless networks,” in
Proceedings of the 12th Workshop on Parallel and Distributed
Simulation (PADS ’98), pp. 154–161, Banff, Canada, May
1998.

[16] M. Varshney, D. Xu, M. B. Srivastava, and R. L. Bagrodia,
“SenQ: a scalable simulation and emulation environment
for sensor networks,” in Proceedings of the 6th International
Conference on Information Processing in Sensor Networks
(IPSN ’07), pp. 196–205, Cambridge, Mass, USA, April 2007.

[17] C. Perkins and E. Royer, “Ad hoc on-demand distance vector
routing,” in Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA ’99), pp. 90–
100, New Orleans, La, USA, February 1999.

[18] D. B. Johnson and D. A. Maltz, “Dynamic source routing
in ad hoc wireless networks,” in Mobile Computing, Kluwer
Academic Publishers, Norwood, Mass, USA, 1996.

[19] D. Cavin, Y. Sasson, and A. Schiper, “On the accuracy
of MANET simulators,” in Proceedings of the 2nd ACM
International Workshop on Principles of Mobile Computing
(POMC ’02), pp. 38–43, Toulouse, France, October 2002.

[20] G. Chen and B. K. Szymanski, “COST: a component-oriented
discrete event simulator,” in Proceedings of the 34th Winter
Simulation Conference (WSC ’02), vol. 1, pp. 776–782, San
Diego, Calif, USA, December 2002.

[21] J. Liu, X. Liu, and E. A. Lee, “Modeling distributed hybrid
systems in Ptolemy II,” in Proceedings of the American Control
Conference, vol. 6, pp. 4984–4985, Arlington, Va, USA, June
2001.

[22] P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao, “Modeling
of sensor nets in Ptolemy II,” in Proceedings of the 3rd
International Symposium on Information Processing in Sensor
Networks (IPSN ’04), pp. 359–368, Berkeley, Calif, USA, April
2004.

[23] J. A. Miller, R. S. Nair, Z. Zhang, and H. Zhao, “JSIM: a Java-
based simulation and animation environment,” in Proceedings
of the 30th Annual Simulation Symposium, pp. 31–42, Atlanta,
Ga, USA, April 1997.

[24] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate
and scalable simulation of entire TinyOS applications,” in
Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems (SenSys ’03), pp. 126–137, Los
Angeles, Calif, USA, November 2003.



16 EURASIP Journal on Embedded Systems

[25] L. Girod, T. Stathopoulos, N. Ramanathan, et al., “A system
for simulation, emulation, and deployment of heterogeneous
sensor networks,” in Proceedings of the 2nd International Con-
ference on Embedded Networked Sensor Systems (SenSys ’04),
pp. 201–213, Baltimore, Md, USA, November 2004.

[26] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, and M.
Karir, “ATEMU: a fine-grained sensor network simulator,” in
Proceedings of the 1st Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and
Networks (SECON ’04), pp. 145–152, Santa Clara, Calif, USA,
October 2004.

[27] M. Demmer, P. Levi, A. Joki, E. Brewer, and D. Culler, “Tython:
a dynamic simulation environment for sensor networks,”
Tech. Rep. UCB/CSD-05-1372, Department of Electrical
Engineering and Computer Science, University of California,
Berkeley, Calif, USA, 2005.

[28] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and
M. Welsh, “Simulating the power consumption of large-
scale sensor network applications,” in Proceedings of the
2nd International Conference on Embedded Networked Sensor
Systems (SenSys ’04), pp. 188–200, Baltimore, Md, USA,
November 2004.

[29] J. Heidemann, N. Bulusu, J. Elson, et al., “Effects of
detail in wireless network simulation,” in Proceedings of the
SCS Multiconference on Distributed Simulation, pp. 3–11,
USC/Information Sciences Institute, Society for Computer
Simulation, Phoenix, Ariz, USA, January 2001.

[30] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho,
“Lua—an extensible extension language,” Software: Practice
and Experience, vol. 26, no. 6, pp. 635–652, 1996.

[31] S. A. Madani, S. Mahlknecht, and J. Glaser, “A step towards
standardization of wireless sensor networks: a layered protocol
architecture perspective,” in Proceedings of the International
Conference on Sensor Technologies and Applications, pp. 82–87,
Valencia, Spain, October 2007.

[32] V. Kawadia and P. R. Kumar, “A cautionary perspective on
cross-layer design,” IEEEWireless Communications, vol. 12, no.
1, pp. 3–11, 2005.

[33] W. Su and T. L. Lim, “Cross-layer design and optimization
for wireless sensor networks,” in Proceedings of the 7th ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing
(SNPD ’06), pp. 278–284, Las Vegas, Nev, USA, June 2006.

[34] V. T. Raisinghani and S. Iyer, “Cross-layer design optimiza-
tions in wireless protocol stacks,” Computer Communications,
vol. 27, no. 8, pp. 720–724, 2004.

[35] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey,
“Power sources for wireless sensor networks,” in Proceedings
of the 1st European Workshop on Wireless Sensor Networks
(EWSN ’04), vol. 2920, pp. 1–17, Springer, Berlin, Germany,
January 2004.

[36] D. Rakhmatov, S. Vrudhula, and D. A. Wallach, “A model
for battery lifetime analysis for organizing applications on
a pocket computer,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 11, no. 6, pp. 1019–1030, 2003.

[37] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless
sensor networks,” Communications of the ACM, vol. 47, no. 6,
pp. 53–57, 2004.


	1. INTRODUCTION
	2. RELATEDWORK
	3. SIMULATION FRAMEWORK
	3.1. Methodology
	3.1.1. Work flow
	3.1.2. Optimization

	3.2. Structure
	3.3. Basic concepts
	3.3.1. Modularization
	3.3.2. Functional interfaces
	3.3.3. CPU
	3.3.4. Timing
	3.3.5. Interrupts
	3.3.6. Environment
	3.3.7. Air
	3.3.8. Power simulation

	3.4. Dynamic behavior

	4. MODULE LIBRARY
	4.1. Protocol architecture
	4.2. Interfaces

	5. DATA POSTPROCESSING
	6. RESULTS
	6.1. Performance evaluation
	6.2. Case study
	6.3. Optimization study

	7. CONCLUSIONS AND FUTUREWORK
	REFERENCES

