
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 280347, 12 pages
doi:10.1155/2008/280347

Research Article
A Priori Implementation Effort Estimation for Hardware
Design Based on Independent Path Analysis

Rasmus Abildgren,1 Jean-Philippe Diguet,2 Pierre Bomel,2 Guy Gogniat,2

Peter Koch,3 and Yannick LeMoullec3

1CISS, Aalborg University, Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark
2Lab-STICC (UMR CNRS 3192), Université de Bretagne Sud, Centre de recherche, BP 92116, 56321 Lorient Cedex, France
3CSDR, Aalborg University, Fredriks Bajers Vej 7, 9220 Aalborg East, Denmark

Correspondence should be addressed to Rasmus Abildgren, rab@es.aau.dk

Received 15 March 2008; Revised 30 June 2008; Accepted 18 September 2008

Recommended by Markus Rupp

This paper presents a metric-based approach for estimating the hardware implementation effort (in terms of time) for an
application in relation to the number of linear-independent paths of its algorithms. We exploit the relation between the number of
edges and linear-independent paths in an algorithm and the corresponding implementation effort. We propose an adaptation of
the concept of cyclomatic complexity, complemented with a correction function to take designers’ learning curve and experience
into account. Our experimental results, composed of a training and a validation phase, show that with the proposed approach it
is possible to estimate the hardware implementation effort. This approach, part of our light design space exploration concept, is
implemented in our framework “Design-Trotter” and offers a new type of tool that can help designers and managers to reduce the
time-to-market factor by better estimating the required implementation effort.

Copyright © 2008 Rasmus Abildgren et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

1.1. Discussion of the problem

Companies developing embedded systems based on high-
end technology in areas such as telecommunication, defence,
consumer products, healthcare equipment are evolving in
an extremely competitive globalised market. In order to
preserve their competitiveness, they have to deal with several
contradicting objectives: on one hand, they have to face the
ever-increasing need for shorter time-to-market; and on the
other hand, they have to develop and produce low-cost, high-
quality, and innovative products.

This raises major challenges for most companies, espe-
cially for small- and medium-sized enterprises (SMEs).
Although SMEs are under pressure due to the above-
mentioned factors, they are either not applying the latest
design methodologies or cannot afford the modern elec-
tronic system level (ESL) design tools. By limiting themselves
to traditional design methodologies, SMEs make themselves
more vulnerable to unforeseen problems in the development

process, making the time-to-market factor one of the most
critical challenges they have to deal with. A survey released at
the Embedded Systems Conference (ESC 2006) [1] indicated
that more than 50% of embedded design projects are
running behind schedule (i.e., 25% are 1-2 months late, 18%
3–6 months). In the 2008 version of the survey [2], it is again
shown that meeting the schedule is the greatest concern for
design teams.

Moreover, a workshop [3] held for Danish SMEs working
in the domain of embedded systems clearly indicates that
there is a need for changing and improving their design
trajectories in order to stay in front of the global market.
More specifically, this calls for setting modern design, that is,
hardware/software (HW/SW) codesign, and ESL design into
actual practice in SMEs, so that they can reduce their time-
to-market factor and keep up with their competitors by being
more efficient in producing embedded systems.

Although HW/SW codesign and ESL design tools (both
commercial and academic) have been available for several
years, there are several barriers that, so far, have prevented
their wide adoption such as the following:

2 EURASIP Journal on Embedded Systems

(i) difficulty in transferring the methods and tools devel-
oped by academia into industry, because they are
mostly developed for experimenting, validating, and
proving new concepts rather than for being used in
companies; therefore adapting and transferring these
methods and tools require additional and tedious
efforts, delaying their adoption;

(ii) financial cost in terms of tool licenses, training, and
so forth that many SMEs cannot afford, since the cost
of a complete commercial tool chain can exceed in
excess of 150 kC per year;

(iii) training cost and knowledge management issues,
meaning that switching to a new design trajectory
also involves the risk of loosing momentum, that is,
loosing time and efficiency because of the training
needed to master the new methods and tools;

(iv) many modern design flows are not mature enough
to generate efficient and automatic real-time code,
and combined with the previous item, cause potential
adopters to wait until it is safe to switch.

Considerable research has been undertaken to estimate
implementation factors such as area, power, and speed up
that are subsequently used in HW/SW partitioning tools with
different focuses related to granularity, architecture model,
communication topology, and so on. All of these research
projects do not include the man-power cost which is the most
critical one for many companies, and especially SMEs. This
work takes its outset in a research framework facilitating the
HW/SW partitioning step for SMEs. It focuses on a light
design space exploration approach called “DSE-light” that
combines the advances in terms of design methodologies
found in academia and the ease of integration required by
SMEs, that is, lowering the above-mentioned barriers.

The contribution presented in this paper is the develop-
ment of a method for estimating the man-power cost (i.e.,
development time) for implementing hardware components
and the integration of this method into our framework, so
that HW/SW partitioning decisions can be wiser. A method
that used iteratively and systematic will form the engine for
precise development schedules. The following subsections
present the rationale for this work and the idea enabling this
contribution.

1.2. Parameters that influence
the implementation effort

A common problem in both SMEs and larger companies
is that of estimating the amount of time required to map
and implement an algorithm onto an architecture given
parameters such as [4, 5] the following :

(i) manpower, that is, the available development team(s)
and their size(s),

(ii) quality of the social interactions between the team
members and the teams,

(iii) experience of the developers (e.g., years of experi-
ence, previously developed projects, novelty of the
current project, etc.),

(iv) skills of the developers, that is, their ability to solve
problems (this is not the same as experience, which
only reflects how often one has tried before),

(v) availability of suitable and efficient tools and how
easy they are to learn and use,

(vi) availability of SW/HW IP code/cores,

(vii) involvement of the designers, that is, are they working
on other projects simultaneously?

(viii) design constraints, that is, real-time requirements,

This work addresses the issue of adding man-power cost
parameter into the cost function and thereby guiding the
HW/SW partitioning. More specifically we concentrate on
the mapping process, that is, the process of mapping a given
algorithm onto a given architecture and the implementation
effort (i.e., time) related to the complexity of that algorithm.
Our framework also addresses other issues of HW/SW
partitioning, for example, [6].

1.3. Idea

In order to understand what makes an algorithm difficult
to implement, five semistructured interviews have been
conducted with engineers (hardware developers) with very
little to 20 years of experience. (Semistructured interview is
an information-gathering method of qualitative research. It
is also an adequate tool to capture how a person thinks of a
particular domain [7].)

From the interviews, it was deduced that several
parameters influence on the hardware design difficulty.
The hardware developers stated that available knowledge
about worst cases, dependencies between variables, and the
completeness of the design description of the entire system
including all communications are important for the design
time. However, according to them, the major parameter
influencing a hardware design is the number of connections
and signals between the internal components. This should
be viewed in the way in which every time a signal enters a
component, it means that the component needs to act on it.
More signals bring more parameters into the component and
that very often leads to an increased complexity.

Based on the interviews, we form our hypothesis,
which is that a strong relation exists between what renders
an algorithm complex to implement and the number of
components as well as the number of signals/paths in the
algorithm.

To ensure that not only the number of paths are counted
but also that a high number of components is present, we
choose to only measure the number of linear-independent
paths. Furthermore, this insures that components occuring
several times during the execution are counted only once,
which better reflects the actual implementation efforts.

The remainder of the paper is organised as follows:
Section 2 gives an overview of the state-of-the-art methods
for estimating the implementation effort both for software
and hardware designs and indicates the need for further work
for hardware design. In Section 3 a new metric for estimating
the development time is defined and combined with our

Rasmus Abildgren et al. 3

research tool “Design-Trotter.” Section 4 presents some test
cases used to investigate the validity of the above-mentioned
hypothesis and of the proposed metric. Furthermore, the
experimental results are analysed. Finally we conclude in
Section 5.

2. STATE OF THE ART

2.1. Software

Most research about estimating implementation effort
is found in the software domain, especially within the
COCOMO project [8]. The problem of estimating the imple-
mentation effort is twofold. First, a reasonable measure needs
to be developed for being able to quantify the algorithm.
Second, a model needs to be developed, describing a rational
relation between the measure and the implementation effort.

2.1.1. COCOMO

To start with the model, a typical power model has been
proposed inside the COCOMO experiment [8, 9]:

Effort = A× Sizeb, (1)

where Size is an estimate of the project size, and A and b
are adjustable parameters. These parameters are influenced
by many external factors which we previously discussed in
Section 1.2, but can be trained, based on previous project
data.

To use this COCOMO measure, there is a need for
expressing the size of the project. Inside the software domain,
the dominating metric is lines of code (LOC). Using LOC
is not without difficulties, for example, how is a code line
defined? Reference [10] discusses this issue and states that
LOC is not consistent enough for that use; this is also
supported by [11]. Using the LOC metric also has several
difficulties, for example, it is not a language independent
metric. Furthermore, hardware developers also tend to
disapprove this measure, since they do not feel that it is a
representative measure for hardware designs.

However, we do not claim that there is no relation
between LOC and the implementation effort. It is impossible
to write 10 k lines in one day, but for VHDL the relation is
not always straightforward. In the experiments that we have
performed (data shown in Table 1) there is no unambiguous
relation between the LOC in VHDL and the development
time.

Reference [11] describes that making “a priori” determi-
nation of the size of a software project is difficult especially
when using the traditional lines of code measure; instead
function points-based estimation seems to be more robust.

2.1.2. Function points analysis

The function points metric was first introduced by Albrecht
[12] and consists of two main stages: The first stage is
counting and classifying the function types for the software.
The identified functions need to be weighted reflecting
their complexity, that is determined on the basis of the

developers’ perception. The second stage is the adjustment
of the function points according to the application and
environment, based on 14 parameters. The function points
can then be converted into an LOC measure, based on
an implementation language-dependent factor, and, for
example, [11] reports that the function points metric can
be used as an implementation effort estimation metric. The
function points analysis has been criticised of being too
heuristic and [10] has proposed the SPQR/20 function points
metric as an alternative. Reference [13] has compared the
SPQR/20 and the function points analysis and found their
accuracy comparable even though the SPQR/20 metric is
simpler to estimate.

2.2. VHDL function points

To the knowledge of the authors, limited research has been
carried out in the field of estimating the implementation
difficulty of hardware designs.

Fornaciari et al. [14] have taken up the idea from the
function points analysis and modified it to fit VHDL. By
counting the number of internal I/O signals and compo-
nents, and classifying these counts into levels, they extract
a function point value related to VHDL. They have related
their measure to the number of source lines in the LEON-
1 processor project, and their predictions are within 20%
of the real size. However, as stated previously, estimating
the size does not always give an accurate indication of the
implementation difficulty, and the necessary implementa-
tion time.

By measuring the number of internal I/O signals and
components, their work goes along the same road as
our initial observations indicate. However, our approach
is pointing towards estimating the implementation effort,
based on a behavioural description of the algorithm in the C-
language. Furthermore, it also takes the designer’s experience
into account.

3. METHODOLOGY

The proposed flow for estimating the implementation effort
is illustrated in Figure 1. It takes its outset in a behavioural
description of the algorithm, in C-language (including
library function source code), which is intended to be
implemented in hardware. From this description, we use
the design-Trotter framework to generate a hierarchical
control data flow graph (HCDFG) which is then measured
to identify the number of independent paths. The resulting
measure, combined with the experience of the developers,
gives an estimate of the required implementation effort. The
method is self-learning in the sense that after each success-
ful implementation, new knowledge about the developers
involved can be integrated, and improve the accuracy of
the estimates. The HCDFG and the approach for modelling
the developers experience are covered later in this section
but initially we investigate how the number of paths can be
measured.

4 EURASIP Journal on Embedded Systems

Behavior
description

(C-language)

HCDFG
generation

Estimated
implementation

effortDeveloper
experience

Design-Trotter framework

Metric analysis

Figure 1: The flow of estimating the required implementation
effort. The starting point is a behavioural description in C of the
algorithm to be implemented in hardware (e.g., via VHDL). From
this description, an HCDFG is generated and measured to identify
the number of independent paths in the algorithm. This measure,
combined with the experience of the developers, gives an estimate
of the required implementation effort (expressed in time).

3.1. Cyclomatic complexity

As described in Section 1.3, the number of independent
paths is expected to correlate with the complexity that the
engineers are facing when working on the implementation.
Therefore, finding a method to measure the number of inde-
pendent paths in an algorithm could help us investigating
this issue. A metric measuring is the cyclomatic complexity
measure proposed by McCabe [15] which measures the
number of linear-independent paths in the algorithm.

The cyclomatic complexity was originally invented as a
way to intuitively quantify the complexity of algorithms,
but has later found use for other purposes especially in
the software domain. The cyclomatic complexity has been
used for evaluating the quality of code in companies [16],
where quality covers aspects from understandability over
testability to maintainability. It has also been shown [17]
that algorithms with a high cyclomatic complexity more
frequently have errors than algorithms with lower cyclomatic
complexity. The cyclomatic complexity has furthermore
been used for evaluating programming languages for parallel
computing [18], where languages that encapsulate control
statement in instructions are receiving higher scores. All use
the cyclomatic complexity measure under the assumptions
that the complexity has significant influence on the number
of paths the developers need to inspect, its correlation to the

Condition

A

B C

D

(a) P(G) = 2

Condition

Condition

A

B C

D E

F

(b) P(G) = 3

Figure 2: Two examples of graphs for which the cyclomatic
complexities have been calculated.

number of paths that needs to be tested, or a combination of
the two.

In the domain of hardware, the cyclomatic complexity
has also found use, judging the readability and maintainabil-
ity in the SAVE project [19]. It is worth noticing that they use
a misinterpreted [20] definition of the cyclomatic complexity
[21].

All these projects utilise the cyclomatic complexity’s
ability to measure the number of independent paths and
relate them to their individual cases:

P(G) = π + 1, (2)

where π represents the number of condition nodes in the
graph G representing the algorithm being analysed. Figure 2
shows two examples of graphs and the corresponding
cyclomatic complexity.

In this work, we propose an adapted version of the
cyclomatic complexity definition to estimate, a priori, the
number of independent paths on a hierarchical control data
flow graph (HCDFG), defined in the following section.
The cyclomatic complexity for an HCDFG is obtained by
examining its subgraphs as explained in Section 3.3.

3.2. HCDFG

For this work we use the hierarchical control data flow
graphs (HCDFGs), which are introduced in [22, 23]. The
HCDFGs are used to represent an algorithm with a graph-
based model so the examination task of the algorithm
is eased. Control/Data Flow Graphs (CDFGs) are well
accepted by designers as a representation of an algorithm
where data flow graphs represent the data flow between
different processes/operations, and the control flow layer,
encapsulating these data flows and adding control structures
to the graphical notation. The hierarchy layered structure
is added to help representing large algorithms as well as to
enable the analysis mechanism to identify functions/blocks
in the graph. Such an identified block can then be seen
as a single HCDFG that can be instantiated several times.

Rasmus Abildgren et al. 5

Data
#1

Data
#2

H #1

Data
#3

HCDFG #0
Data
#1

Data
#2

Data
#1.1

Data
#1.2

Data
#1.3

C #1.1 H #1.2

H #1.3

Data
#3

HCDFG #1

For eval.

For

For body #1

For evol.

Data
#1

Data
#1.1

CDFG #1.1

Data
#1

Data
#7

Data
#8

Data
#9

Data
#1.1

For body DFG #1

∗

+

Processing

Data
Condition
HCDFG

CDFG
DFG
Data dependencies
Control dependencies

Figure 3: An overview of how the hierarchy in an HCDFG allows
analysis of an algorithm on different levels and how the levels are
related.

Figure 3 shows an example of a hierarchical control data flow
graph.

In this work the design space exploration tool “Design-
Trotter” is used as an engine for analysing the algorithms.
The HCDFG model is used as “Design-Trotter’s” internal
representation.

The hierarchy of an HCDFG is shown in Figure 3. An
HCDFG can consist of other HCDFGs, Control/Data flow
graphs (CDFGs) and data flow graphs (DFGs) as well as
elementary nodes (processing, memory, and control nodes).
An HCDFG is connected via dependency edges. In this work
we only explore the graph at levels above the DFGs, and
therefore only concentrate on these when we define the graph
types in what follows.

Let us consider the hierarchical control data flow graph,
GHCDFG = (NHCDFG,EHCDFG), where NHCDFG arethe nodes
denoted by NHCDFG = {nHCDFG1 , . . . ,nHCDFGm} and the nodes
are NHCDFG ∈ {GHCDFG|GCDFG|GDFG|Data}, meaning that
the nodes in the GHCDFG can be instances of its own type,
encapsulated control data flow graphs, GCDFG, encapsulated
data flow graphs GDFG, or data transfer nodes, Data. The
last one is introduced to avoid the duplication of data
representations in the hierarchy, when data is exchanged
between the graphs. Thereby, data are only represented by
their nodes and not by edges as it is common in many other
types of DFGs.

The edges, EHCDFG, connect the nodes such that
EHCDFG = {enHCDFGi ,nHCDFG j

}, where i /= j and represent the
indexes of the nodes, EHCDFG ∈ {DD} and where every
node can have multiple input and/or output edges. For the
GHCDFG, only data dependencies, DD, are allowed, and no
control dependencies, CD.

In this way the HCDFG forms a hierarchy of encapsu-
lated HCDFGs, CDFGs, and DFGs, connected via exchang-
ing data nodes. The HCDFG can be seen as a container graph
for other graph types such as the CDFG.

We can define the CDFG as GCDFG = (NCDFG,ECDFG),
where NCDFG are the nodes denoted by NCDFG = {nCDFG1 ,
. . . ,nCDFGm} and the nodes are NCDFG ∈ {CC|GHCDFG|
GDFG|Data}, where CC ∈ {if|switch|for|while|do-while}.
In this way the GCDFG is able to describe common control
structures, where the actual data processing is encapsulated
in either DFGs or HCDFGs. Again, the data exchange nodes
are used to exchange data between the other nodes.

The edges, ECDFG, connect the nodes such that ECDFG =
{enCDFGi ,nCDFG j

}, where i /= j and represent the indexes of the
nodes. If nCDFGi ∈ CC and nCDFG j ∈ {GHCDFG|GDFG}, then
{enCDFGi ,nCDFG j

} ∈ {CD}, else {enCDFGi ,nCDFG j
} ∈ {DD}.

Beneath the control data flow graphs GCDFG, the data
flow graphs GDFG exist but they are of no use in this work
so we will not define them further here.

3.3. Calculating the cyclomatic complexity on CDFGs

Now that the HCDFG has been defined, we explain our
proposed method for measuring the cyclomatic complexity
on the CDFGs.

Since the cyclomatic complexity only considers the
control structure in finding the number of independent
paths in the algorithm, the DFG part of the algorithm is, as
mentioned earlier, of no interest for this task because it only
gives a single path. On the other hand, what is of interest is
how the cyclomatic complexity is measured on the CDFGs

6 EURASIP Journal on Embedded Systems

and HCDFGs which are built by the tool Design-Trotter.
This leaves us with the following cases which are described
in detail afterwards:

(i) If constructs,

(ii) Switch constructs,

(iii) For-loop,

(iv) While/do-while loops,

(v) Functions,

(vi) HCDFGs in parallel,

(vii) HCDFGs in serial sequence.

3.3.1. If constructs

“If constructs” case is represented as CDFGs, GCDFG, where
one node is a control node of type if (see Figure 4(a)). Before
arriving at the control node, a condition evaluation node
neval ∈ {GHCDFG|GDFG} is traversed to calculate the boolean
variable stored in nData (to maintain simplicity, these are not
shown in Figure 4(a)) that is used in the condition node. If
the variable is true, the algorithm follows the path through
the true body node, ntrue ∈ {GHCDFG|GDFG|∅}. Else it goes
to the false body node nfalse ∈ {GHCDFG|GDFG|∅}. Note that
in some cases, either the true body or the false body does not
exist, but it still gives a path. In this case, according to the
cyclomatic complexity measure, the number of independent
paths is

P
(
nif
) = P

(
ntrue

)
+ P
(
nfalse

)
+ P
(
neval

)− 1. (3)

The last part of (3), +P(neval) − 1 is included in case the
evaluation graph is an HCDFG node.

3.3.2. Switch constructs

“Switch constructs” case is represented as CDFGs, GCDFG,
and is almost the same flow as the “if constructs” case
discussed above. One node is a control node of switch type.
Before arriving to the control node, a condition evaluation
node neval ∈ {GHCDFG|GDFG} is traversed. Depending
on the output, the switch node leads the algorithm flow
to the selected case node: ncasei ∈ {GHCDFG|GDFG}. An
example is shown in Figure 4(b). According to the cyclomatic
complexity measure, the number of independent paths is as
follows :

P
(
nswitch

) = P
(
neval

)− 1 +
N∑

i=1

P
(
ncasei

)
, (4)

where N represents the number of cases, i the index to the
corresponding node on which the paths are measured.

The same argument goes for the P(neval)−1 part of (4); it
is included in case the evaluation graph is an HCDFG node,
but else it is omitted.

If eval.
Data
#1

True body False body

If

Data
#1.1

(a) If

Switch
eval.

Case #1 Case #1 Case #N

Switch

(b) Switch

Data
#1

While eval.

While

While body

Data
#1.1

(c) While

Data
#1

For eval.

For

For body #1

For evol. Data
#1.1

(d) For

Data
#1.1

HCDFG #1 HCDFG #2

Data
#1.2

Data
#1.3

(e) Parallel

Data
#2.1

HCDFG #2

Data
#2.2

CDFG #3

Data
#1.3

(f) Serial

Figure 4: Overview of the different CDFGs and combined HCD-
FGs, on which the cyclomatic complexity values are measured.
Between the (HC)DFGs there is a set of data exchange nodes which
are here left out for simplicity. The symbols are similar to those
presented in Figure 3.

3.3.3. For-loop

“For-loop” case is the most complex of the control structures.
Strictly speaking, a “for loop” consists of three different parts:
the evaluation body, the evolution body, and the for body,
neval, nevol, and nfor-body, respectively. The control node nfor,
determines, based on the output from the evaluation graph,
whether the flow should go into the “for loop” or leave it. The
evolution node updates the indexes. Since each iteration of
the graph needs to pass through the evaluation and evolution
nodes, the number of independent paths is calculated as

P
(
nfor
) = P

(
nfor-body

)
+ P
(
neval

)− 1 + P
(
nevol

)− 1. (5)

Rasmus Abildgren et al. 7

In many cases, the evaluation and evolution part of the
“for loop” are quite simple indexing functions, meaning
that neval ∈ {GDFG}, nevol ∈ {GDFG}, will leave P(nfor) =
P(nfor-body). The “for loop” is illustrated in Figure 4(d).

3.3.4. While loops and do-while loops

“While loops” and “do-while loops” cases are described
jointly since it is only the entry to the loop structure
that separates them and their cyclomatic complexity are
equivalent. The “while loops” consist of two main parts:
the while body nwhile-body ∈ {GHCDFG|GDFG}, and the while
evaluation neval ∈ {GHCDFG|GDFG}. This is illustrated in
Figure 4(c). Deciding whether to continue looping is decided
by the control node nwhile ∈ {while} based on the output
of the neval. Similarly to the “for loop,” each iteration of the
graph needs to pass through the evaluation nodes, so the
number of independent paths can be calculated as

P
(
nwhile

) = P
(
nwhile-body

)
+ P
(
neval

)− 1. (6)

In many cases, the evaluation part of the while loop is a set
of simple test functions, meaning that neval ∈ {GDFG}, which
leaves the P(nwhile) = P(nwhile-body).

3.3.5. Functions

The goal is to identify the number of independent paths
in the algorithm/system. For this, reuse in terms of func-
tions/blocks of code is important. When all independent
paths through a function are known, reuse of this function
does not change the number of independent paths in
the system. From an implementation point of view, such
functions represent an entity where the paths only need to
be implemented once. In HCDFGs, a function/block can be
seen as an encapsulated GHCDFG. Therefore, the number of
independent paths in function/blocks of reused code should
only count once. The paths can be calculated as

P
(
nHCDFGfunction

) =
{

0 if reuse,

P
(
nHCDFG

)
else.

(7)

3.3.6. HCDFGs in parallel and serial

Knowing how to handle all the HCDFGs that are identified
for reuse (function), together with all the CDFGs, does not
give it all. How the hierarchy of graphs should be combined
is also of interest. For a parallel combination of two or more
HCDFGs/CDFGs, as shown in Figure 4(e), the increase in the
number of independent paths is then additive. The number
of paths can be calculated as

P
(
nHCDFGParallel

) =
N∑

i=1

P
(
nHCDFGi

)
, (8)

where N represents the number of nodes in parallel, i
the index to the corresponding node where the paths are
measured.

For serial combination of two or more HCDFGs and/or
CDFGs, the number of independent paths is a combination

of the independent paths of the involved HCDFGs/CDFGs.
Remembering that there always needs to be one path through
the system, the number of independent paths in a serial
combination, is given as

P
(
nHCDFGSerial

) =
N∑

i=1

P
(
nHCDFGi

)− (N − 1), (9)

where N represents the number of nodes in serial, i the index
to the corresponding node where the paths are measured.

An example of serial combination is shown in
Figure 4(f). The number of independent paths for the
entire algorithm, (P(nHCDFGAlg)), is equivalent to the top
HCDFG node which includes all the independent paths of
its subgraphs.

3.4. Experience impact

The experience of the designer has an impact on the
challenge that he/she is facing when developing a system. A
radical example is when a beginner and a developer with ten
years of experience are asked to solve the same task. They will
not see equal difficulty in the same task, and thereby do not
need to put the same effort into the development.

Experience is influenced by many parameters but in
this work we only focus on the time the developer has
worked with the implementation language and the target
architecture.

The impact of experience is a factor that slowly decreases
over time: consider a new developer, the experience that
he/she obtains in the first months working with the language,
and architecture improves his/her skills significantly. On the
other hand, a developer who has worked with the language
and architecture for five years, for example, will not improve
her/his skills at the same rate by working an extra year.
The impact from the experience is therefore not linear but
tends to have a negative acceleration or inverse logarithmic
nature, with dramatic change in impact in the beginning,
progressing towards little or no change as time increases.

In literature, for example, [24], many studies try to
fit historical data to models. An example of a model is a
power function with negative slope or a negative exponential
function. From the vast variety of models that has been
proposed over the years, the only conclusion that can be
drawn is that there are multiple curvatures, but they all
appear to have a negative accelerating slope, which tends to
be exponential/logarithmic.

In order to get the best possible outset for predicting
the implementation effort, it is of vital importance to obtain
some data of the developers’ experiences, and also how
they performed in the past. The parameters involved in the
experience curve can then be trimmed to create the best
possible fit. However, it has not been the purpose of this
work to select the perfect nature for a learning curve nor to
evaluate the accuracy of such one. The learning curve will
be adapted to the individual developers, and as the model is
used in subsequent projects, its accuracy will progressively
improve. As a consequence, the experience here is only

8 EURASIP Journal on Embedded Systems

intended as an element in modelling the complexity and
thereby a means for more accurate estimates.

For the experiments in this study we have chosen to use
the following model:

ηexperience(Dev) = 1
α log(Experience(Dev) + β)

, (10)

where α and β are trim parameters which can be used to
optimise the curve to fit reality, Experience is the number
of weeks which the developer, Dev, has worked with the
language and architecture. Figure 5 depicts the shape of the
experience model.

In this work,our initial experiments have shown that
setting α = 1 and β = 1 makes our model sufficiently general,
and therefore we have not further investigated the tuning of
these two parameters.

4. RESULTS

In order to verify the hypothesis, a classical test has been
conducted. The test is dual phased and consists of (i) a
training phase using a first set of real-life data, during which
the hypothesis is said to be true, and (ii) a validation phase
during which a second set of real-life data is used to evaluate
whether the hypothesis holds true or not.

4.1. Phase one—training

The real-life data used as training data originate from
two different application types that are both developed
as academic projects in universities in France. The first
application is composed of five different video processing
algorithms for an intelligent camera, which is able to
track moving objects in a video sequence. The second
application is a cryptographic system, able to encrypt
data with different cryptographic/hashing algorithms, that
is, MD5, AES and SHA-1. The system consists of one
combined engine [25] as well as individual implementations.
These projects were selected since they all follow the
methodology of using a behavioural specification in C, as
a starting point for the VHDL implementation. Common
to this data is that none of the developers has made
the behavioural specification in C. For the cryptographic
algorithms the behavioural specification comes from the
standards, and the video algorithms were based on a previous
project.

Using the behavioural description as the starting point
of the experiment, the exercise consists of studying the
relationship between the complexity of the algorithms (as
defined in Section 3) and the implementation effort (i.e.,
time) required to implement them in VHDL (including
testbed and heuristic tests).

The developers involved in these projects have all been
Master and Ph.D. students with electrical engineering back-
grounds but no VHDL background other than what they
obtained during their studies, see Table 2. All developers were
taught VHDL by other instructors than the authors, but at
our university. Table 3 summaries the training data.

Experience curve

(Weeks)

0 50 100 150 200 250

Im
pa

ct

0

1

2

3

4

Figure 5: An example of how the lack of experience impacts the
difficulty the engineers are facing.

Complexity (number of paths)

0 10 20 30 40 50 60 70

E
ff

or
t

(w
ee

ks
)

0

2

4

6

8

10

12

14

16

18

20

22

Motion tracking application
Cryptograpy algorithm

T3 T5

T1
MD5
AES

T2
SHA-1

T4

Combine

Figure 6: Relation between the implementation effort (number of
weeks) and the not corrected complexity (as defined in Section 3).

Figure 6 shows the relation between the implementation
effort and the measured complexity for the individual
algorithms. Please note that in this graph the complexity
values are not yet corrected for the designers’ experience.

A first examination of the data points indicates a
possible relation between some of them. However many
other points are located far away from any relation. These
data are not corrected for the designers’ experience and, as
earlier mentioned, we strongly believe that the experience
of the individual designer has a nonnegligible influence
on the development time. If we inspect the data more
thoroughly, it is clear that the points of greatest divergence
are those implementations where the developers have very
limited knowledge and experience with the VHDL lan-
guage.

Applying the proposed equation (10) (nonlinear) expe-
rience transform onto the data, results in a significantly
different picture as depicted in Figure 7. A clear trend toward
a relation is now visible in the plotted data. From the
COCOMO II project [8], it is known that the relationship
between the implementation time and the complexity mea-
sure (in their case lines of code, LOC) can be expressed as a

Rasmus Abildgren et al. 9

Table 1: Line of code, area, and time constraints for the validation data.

Algorithm SS1 SS2 SS3 SS4 SS5 SS6 Ethernet App 4

Dev. Time (weeks) 3.6 6.4 2.4 16.4 12 17.2 16 2

LOC-VHDL 994 1195 776 1695 760 2088 3973 232

Slices 564 2212 382 888 372 2171 3372 750

FlipFlops 913 2921 1290 1366 1208 2077 6149 942

LUTs 997 3157 6453 1569 6443 3458 18255 567

Time Constraint. (ns) 112 128 360 112 360 248 696 56

Table 2: Facts about the developers. Developers for training data
(top) and validation data (bottom).

Developer Education Years in the domain

Dev 1 Ph.D. stud. 0

Dev 2 Stud. (EE) 0

Dev 3 Stud. (EE) 0

Dev 4 Stud. (EE) 0

Dev 5 BSc.EE. 9

Dev 6 MSc.EE. 15

Dev 7 MSc.EE. 9

Dev 8 MSc.EE. 8

Dev 9 MSc.EE. 8

Table 3: Training data (top) and validation data (bottom).
Algorithms are related to the developers and their experience at the
given time. Complexity is not corrected.

Algorithm Complexity Developer Dev. Exp.

T1 10 Dev 1 2

T2 24 Dev 1 10

T3 12 Dev 1 18

T4 14 Dev 2 1

T5 4 Dev 1 20

MD5 10 Dev 3 1

MD5 10 Dev 4 1

AES 10 Dev 4 8

SHA-1 27 Dev 4 14

Combined 59 Dev 4 14

SS1 25 Dev 6, 7 150

SS2 35 Dev 5 150

SS3 17 Dev 5, 6, 7, 8 150

SS4 50 Dev 6 6

SS5 29 Dev 7 3

SS6 25 Dev 5, 6, 7 3

Ethernet app 60 Dev 5, 6, 7, 8, 9 150

App 4 9 Dev 6 150

power function with a weak slope. We showed its nature in
(1), and with correction for experience it becomes

Effort = A× ηexperience(Dev)× P
(
nHCDFGAlg

)b
. (11)

The parameters A and b are found, via a least square (LS)
fit on our training data, to be A = 0.226 and b = 1.103. In

Complexity (number of paths)

0 10 20 30 40 50 60 70

E
ff

or
t

(w
ee

ks
)

0

2

4

6

8

10

12

14

16

18

20

22

Motion tracking application
Cryptograpy algorithm
Least-square model fit

T3
T5

AES

T1 T2
SHA-1

MD5

T4

Combine

Figure 7: Relation between the implementation effort (number of
weeks) and the complexity corrected according to the designers’
experience model as shown in Figure 5.

Figure 7 the dashed line illustrates the relationship, with the
parameters given above.

4.2. Phase two—validation

After having elaborated on a model based on the training
data, we proceeded with the validation of its correctness.
For this, a new set of data provided by ETI A/S, a Danish
SME, is used. The dataset originates from a networking
system and consists of Ethernet applications that have been
implemented on an FPGA, as well as corresponding testbeds.
This Ethernet application is part of an existing system with
which it requires interaction. Table 1 shows additional imple-
mentation information with regards to these applications.
The system is a real-time system with hard-time constraints
and all algorithms were implemented as to meet these con-
straints. Similar to the training data, the development flow
for this application has been as follows: a behavioural C++
model of the application has been constructed before the
implementation on the FPGA architecture. The behavioural
model has been developed by developers separate to those
undertaking the implementation. The developers responsible

10 EURASIP Journal on Embedded Systems

Complexity (number of paths)

0 10 20 30 40 50 60 70

E
ff

or
t

(w
ee

ks
)

−5

0

5

10

15

20

95% confidence interval
Least-square model fit
Ethernet application

App. 4
SS3

SS1

SS2

Ethernet SS5

SS6
SS4

Figure 8: Validation data plot: relation between implementation
effort (number of weeks) and complexity, corrected according to
the designers’ experience model.

for the implementation have obtained their skills in VHDL
from a professional course with no relation to our university
in Denmark.

The time spent on the implementation process covers:
the design and implementation of the VHDL code of
the functionalities and testbed as well as the tests of the
different modules in the applications. This data is shown
in the lower part of Table 3. The time data originate from
the company’s internal registration for the project, and
correspond therefore to the effective time used.

The relation between implementation effort and com-
plexity is plotted in Figure 8. It can be seen that this data,
corrected for the designers’ experience (∗) closely follows the
model derived from the training data (dashed line). Figure 8
also shows the 95% confidence interval, indicating that, with
95% confidence, future predictions of implementation effort
will lie within this interval, given that the model holds true.

Comparing the predicted effort (dashed line) to the real
effort (∗), indicates that there is an estimation error. The
values are also shown in Table 4, The average estimation
error is 0.2 week with a variance of 8. In the next section,
we discuss the validity of the model.

4.3. Validity discussion

Estimating the effort required in implementing an algorithm
into hardware involves many parameters. We discussed a
number of these parameters in Section 1.2, but could not
include them all in this study. The proposed model is
therefore devised from the idea of the relation between
implementation effort and number of linear-independent
paths.

Table 4: Development time and estimated development time
measured in weeks together with the error.

Algorithm Dev. time Est. dev. time Error

SS1 3.6 3.3 0.3

SS2 6.4 4.8 1.6

SS3 3.2 2.2 1

SS4 16.4 20.3 −3.9

SS5 12 16.2 −4.2

SS6 17.2 13.8 3.4

Ethernet app 11.4 8.8 2.6

App 4 2 1.1 0.9

Mean (variance): 0.2 (8)

To validate the model, a classical two-phased hypothesis
test has been performed and the validity of this test depends
on the following important factors: (i) the independence
between training and validation data; (ii) the volume and
variety of the experiments.

In the first instance, not only different applications
were used for training and validation data, but in addition
the developers had no relation in terms of education,
nationality, work, and so forth. Moreover, the validation
data has not been measured before the model was trained.
All this strengthens the validity of the results. The only
potential connection is that some of the developers who
have been involved in the implementation of the training
and validation data have also been included within those
interviewed. However, this accounts for a minority and we
see this as a minimal risk.

Secondly, we should ideally have had a large volume
and variety of experimental data for training and validation.
However, our set of data originates from a single company
and a few developers. So strictly speaking we can only
conclude that this model applies to the specific SME
setup involved in the study and partially to the academic
environment studied.

In order to generalise our model, more cases of validation
are needed. However, obtaining all the statistical data
for this new methodology is time consuming. We would
therefore like to remind the reader that this paper proposes
a methodology for estimating implementation effort and
the validation of the model concentrates on illustrating its
usefulness. Looking at the graphs, we can determine a clear
trend in the results. The curve identified in the training data
is sustained for the validation data as well: they both fall in
line with the underlying rationale, and we are quite confident
in the strength of the proposed model.

The results clearly show the necessity for the proposed
correction function; the proposed logarithmic nature works
well, even though the correction function has not been
trimmed to fit the individual developers due to the lack of
available data. In this light, our approach must be seen as
the engine of a global methodology for the management
of design projects, that impose a systematic registration
of man-power. With such a registration, a database of the
developers’ experience can easily be constructed and the

Rasmus Abildgren et al. 11

correction function can be trimmed to fit the companies’
individual designers. Several iterations of this process would
provide convergence towards a more precise estimation of
the implementation effort.

The limited data set on which the model is constructed
also limits the complexity window to which this model can
be applied: having no algorithm with a corrected complexity
value larger than 51, extrapolating the model further would
weaken the current conclusion. More training data, from
larger and more varied projects would allow for a more
refined model.

Nevertheless, the results described in this paper are very
encouraging with all the real-life cases that we have examined
and we are reasonably confident that this model can easily be
applied to other types of applications.

5. CONCLUSION

The contribution presented in this paper is a metric-based
approach for estimating the time needed for hardware imple-
mentation in relation to the complexity of an algorithm.
We have deduced that a relationship exists between the
number of linear-independent paths in the algorithm and the
corresponding implementation effort. We have proposed an
original solution for estimating implementation effort that
extends the concept of the cyclomatic complexity.

To further improve our solution, we developed a more
realistic estimation model that includes a correction function
to take into account the designer’s experience.

We have implemented this solution in our tool design
Trotter of which the input is a behavioural description in C
language and the output is the number of independent paths.
Based on this output and the proposed model, we are able to
predict the required implementation effort. Our experimen-
tal results, using industrial Ethernet applications, confirmed
that the data, corrected for the designers’ experience, follows
the derived model closely and that all data falls inside its
95% confidence interval. Using this method iteratively paves
the way for an implementation effort estimator of which the
accuracy improves continuously after each project.

REFERENCES

[1] D. Blaza, “Embedded systems design state of embedded
market survey,” Tech. Rep., CMP Media, New York, NY, USA,
2006.

[2] R. Nass, “An insider’s view of the 2008 embedded market
study,” Tech. Rep., CMP Media, New York, NY, USA, 2008.

[3] “Workshop for Danish smes developing embedded systems
co-organized by the Danish technological institute, the center
for software defined radio (csdr) and the center for embedded
software systems (ciss),” Nyhedsmagasinet Elektronik & Data,
Nr.1 2008, Aarhus, Denmark, 2008.

[4] O.-H. Kwon, “Keynote speaker: perspective of the future semi-
conductor industry: challenges and solutions,” in Proceedings
of the 44th Design Automation Conference (DAC ’07), San
Diego, Calif, USA, June 2007.

[5] S. McConnell, Software Estimation: Demystifying the Black Art,
Microsoft Press, Wasthington, DC, USA, 2006.

[6] R. Abildgren, A. Saramentovas, P. Ruzgys, P. Koch, and
Y. Le Moullec, “Algorithm-architecture affinity—parallelism
changes the picture,” in Proceedings on the Design and
Architectures for Signal and Image Processing, Grenoble, France,
November 2007.

[7] M. A. Honey, “The interview as text: hermeneutics considered
as a model for analysing the clinically informed research
interview,” Human Development, vol. 30, pp. 69–82, 1987.

[8] B. W. Boehm, C. Abts, A. W. Brown, et al., Software Cost
Estimation with COCOMO II, Prentice-Hall, Upper Saddle
River, NJ, USA, 2000.

[9] B. W. Boehm, Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, NJ, USA, 1981.

[10] T. Jones, Programming Productivity, McGraw-Hill, New York,
NY, USA, 1986.

[11] G. C. Low and D. R. Jeffery, “Function points in the estimation
and evaluation of the software process,” IEEE Transactions on
Software Engineering, vol. 16, no. 1, pp. 64–71, 1990.

[12] A. J. Albrecht, “Measuring application development produc-
tivity,” in Proceedings of the IBM Application Development
Symposium, pp. 83–92, Monterey, Calif, USA, October 1979.

[13] D. R. Jeffery, G. C. Low, and M. Barnes, “Comparison of
function point counting techniques,” IEEE Transactions on
Software Engineering, vol. 19, no. 5, pp. 529–532, 1993.

[14] W. Fornaciari, F. Salice, U. Bondi, and E. Magini, “Devel-
opment cost and size estimation starting from high-level
specifications,” in Proceedings of the 9th International Sympo-
sium on Hardware/Software Codesign, pp. 86–91, Copenhagen,
Denmark, April 2001.

[15] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[16] D. L. Lanning and T. M. Khoshgoftaar, “Modeling the rela-
tionship between source code complexity and maintenance
difficulty,” Computer, vol. 27, no. 9, pp. 35–40, 1994.

[17] T. J. Walsh, “Software reliability study using a complexity
measure,” in Proceedings of the National Computer Conference
(NCC ’79), vol. 48, pp. 761–768, AFIPS Press, New York, NY,
USA, June 1979.

[18] S. P. VanderWiel, D. Nathanson, and D. J. Lilja, “Complexity
and performance in parallel programming languages,” in
Proceedings of the 2nd International Workshop on High-Level
Programming Models and Supportive Environments (HIPS ’97),
pp. 3–12, Geneva, Switzerland, April 1997.

[19] M. Mastretti, M. L. Busi, R. Sarvello, M. Sturlesi, and S.
Tomasello, “VHDL quality: synthesizability, complexity and
efficiency evaluation,” in Proceedings of the European Design
Automation Conference with EURO-VHDL (EURO-DAC ’95),
pp. 482–487, IEEE Computer Society Press, Brighton, UK,
September 1995.

[20] I. Feghali and A. H. Watson, “Clarification concerning
modularization and mccabe’s cyclomatic complexity,” Com-
munication of the ACM, vol. 37, no. 4, pp. 91–94, 1994.

[21] B. Henderson-Sellers, “Modularization and mccabe’s cyclo-
matic complexity,” Communication of the ACM, vol. 35, no.
12, pp. 17–19, 1992.

[22] Y. Le Moullec, N. B. Amor, J.-P. Diguet, M. Abid, and J.-L.
Philippe, “Multi-granularity metrics for the era of strongly
personalized SOCs,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE ’03), vol. 1, pp. 674–679,
Munich, Germany, March 2003.

[23] Y. Le Moullec, J.-P. Diguet, N. B. Amor, T. Gourdeaux, and
J.-L. Philippe, “Algorithmic-level specification and character-
ization of embedded multimedia applications with design

12 EURASIP Journal on Embedded Systems

trotter,” The Journal of VLSI Signal Processing, vol. 42, no. 2,
pp. 185–208, 2006.

[24] A. Heathcote, S. Brown, and D. J. Mewhort, “The power
law repealed: the case for an exponential law of practice,”
Psychonomic Bulletin & Review, vol. 7, no. 2, pp. 185–207,
2000.

[25] S. Ducloyer, R. Vaslin, G. Gogniat, and E. Wanderley,
“Hardware implementation of a multi-mode hash architecture
for MD5, SHA-1 and SHA-2,” in Proceedings on the Design
and Architectures for Signal and Image Processing Workshop
(DASIP ’07), Grenoble, France, November 2007.

	1. INTRODUCTION
	1.1. Discussion of the problem
	1.2. Parameters that influence the implementation effort
	1.3. Idea

	2. STATE OF THE ART
	2.1. Software
	2.1.1. COCOMO
	2.1.2. Function points analysis

	2.2. VHDL function points

	3. METHODOLOGY
	3.1. Cyclomatic complexity
	3.2. HCDFG
	3.3. Calculating the cyclomatic complexity on CDFGs
	3.3.1. If constructs
	3.3.2. Switch constructs
	3.3.3. For-loop
	3.3.4. While loops and do-while loops
	3.3.5. Functions
	3.3.6. HCDFGs in parallel and serial

	3.4. Experience impact

	4. RESULTS
	4.1. Phase one—training
	4.2. Phase two—validation
	4.3. Validity discussion

	5. CONCLUSION
	REFERENCES

