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1. CONTEXT ANDMOTIVATION

1.1. Embedded control systems

Embedded control systems are implementing automatic con-
trol laws or signal processing, such as in robotic, automotive,
or avionics systems, or even more widely available portable
devices processing voice and image signals. These systems
are reactive, working in close interaction with their environ-
ment, including the controlled process which has its own dy-
namics (typically, following the laws of physics), imposing
real-time management. Their global behavior results from
this very interaction.

They are typically designed in terms of continuous mod-
els, and then implemented in a discretized form, as a cyclic
computation upon sensor input data, producing extracted
information, or control values towards actuators. This com-
bination of computations and resource usage (sensors, pro-
cessors, memory, power, actuators) defines a level of abstrac-
tion which we call a task.

For a complex system, with a number of different re-
sources and meant to fulfill a variety of functionalities, sev-
eral controlmodes or phases can be designed, and the switch-
ing between them has to be handled and controlled properly
[1]. This can be intricate and the risk of errors is important,

because of the complexity of systems and of requirements,
particularly with respect to constraints on resource usage and
interaction with the environment. Task handlers can be seen
as property-enforcing layers [2]. Instances of systems struc-
tured this way can be found in robotics, for example, in robot
programming environments likeOrccad [3]. Programming
languages for such purposes typically combine data flow and
sequencing [4–7]. The same kind of abstraction level, consid-
ering the control of tasks independently of the encapsulated
computation, is considered in the reactive language Electre
[8].

We address the difficulty of designing such complex con-
trollers safely by proposing a method applying safe design
techniques to the domain of embedded control systems.

1.2. Safety-critical systems

These systems are in interaction with their environment, in
such a way that malfunction can lead to disastrous conse-
quences, be it material, financial, or human. Hence, their de-
sign has to be safe, so that they are fully validated before op-
eration.

Formal methods and verification are a way to design safety-
critical systems with an explicit care for their validation. The
design is based on models of requirements, architectures,
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properties to be satisfied. A common practice consists of
building up a specification, and then using formal verifi-
cation techniques (e.g., model checking of temporal logic
properties on a transition system-based abstraction of the
system) to assess whether given properties are satisfied or
not. In the latter case, when a bug is detected, the verification
technique can give indications or a diagnosis on its origin,
and the designer has to go back to the design and modify it,
and verify again.

Such techniques are considered difficult to use, amongst
other things because of the competence required in formal
techniques. Much effort is devoted to make them more user-
friendly, because they are to be applied by engineers special-
ized in the systems under design. A general notion of invisi-
ble formal methods advocates for fully automated techniques,
integrated into a design process and tools. Approaches exist
in methods for correctness by construction [9], where com-
ponents assembly preserves essential properties like deadlock
freedom.

Some programming languages have compilers integrating
verification, for example, the synchronous languages for re-
active systems [10–12] check for each programwhether static
properties are satisfied, regarding the coherence of event syn-
chronizations. Explorations of dynamical behaviors in the
reachable state space, integrated in the compilation [13, 26]
is applied less currently, for example, for optimization pur-
poses with respect to dead code [14], or interface computa-
tions [15].

For the control systems that we consider, what has to be
verified is the correctness of the controller handling of tasks
and resources. We propose to use a formal technique, tar-
geted at the level of these controllers, integrated in a user-
friendly design framework.

1.3. Control of reactivemultitasks systems

1.3.1. Robotics systems asmultitasks systems

A common approach in the design of robotics systems is the
discrete/continuous control approach. This framework divides
a system in two separate layers:

(i) the continuous control layer is a set of purely computa-
tional tasks, each one implementing a specific atomic
action on the system (e.g., control laws for a specific
move);

(ii) the discrete control layer is dedicated to the schedule of
these computational tasks.

The Orccad tool [3], for instance, implements this ap-
proach. Within this tool, the tasks of the automatic con-
trol layer, named robot tasks, can be described as a dataflow
graph of algorithmic modules, implemented with a general-
purpose programming language. To each task corresponds
a single automaton managing starting, termination, and ex-
ceptions. The discrete control layer is then described ei-
ther by means of the synchronous reactive language Esterel
[16], either withMaestRo [17], a domain-specific language
designed as a front end for Orccad . MaestRo features

imperative sequencing constructs, applied to the defined ro-
bot tasks. Its compilation generates a controller in Esterel ,
which interacts with the tasks’ automata. The behavior of this
controller is therefore fully defined, and its temporal proper-
ties can be checked by the use of a model-checking tool.

1.3.2. Automated synthesis of task handlers

Discrete controller synthesis [19] can be defined in the frame-
work of formal languages, or finite state automata or tran-
sition systems. It consists of, given a property as objective,
computing the constraint (i.e., the controller) on transitions,
if there exists one, such that the resulting constrained (i.e.,
controlled) behavior satisfies the property. It can be defined
on algorithmic bases similar to those for model checking. It
differs from verification in that it is more constructive, and
proposes a solution.1 The technique has been studied and
implemented in the synchronous framework [20].

It has been applied to the modelling and control of multi-
task systems [9, 21–23], where the set of tasks is modelled as a
transition system, and a controller has to be found that han-
dles the preservation of constraints regarding the resources
and sequencing. It can then be seen as the automatic genera-
tion of a property-enforcing layer [2] for a given system, or of
an application-specific scheduler [24].

Our aim is to adapt these models and applications of dis-
crete controller synthesis to multitask control systems, in a
way such that it is encapsulated into a simple domain-specific
language, and an automatic generation framework.

1.4. Our approach

We propose a domain-specific language, called Nemo , whose
compilation encapsulates controller synthesis for multitask
systems. Its constructs describe domain-specific notions of
resources and their constraints, tasks and their control, par-
ticular ordering constraints to be enforced, and applications
built upon them. It is defined in terms of transition sys-
tems, temporal properties, and synthesis objectives. We pro-
duce, through a compilation-like process including a phase
of discrete controller synthesis (i.e., automatically), a correct
application-specific task handler that satisfies the constraints
(if there exists one). This way, this formal technique con-
tributes to the safety of the designed systems, while being en-
capsulated in a tool that makes it usable by programmers. We
use synchronous languages, modelling techniques and tools,
particularly the Mode Automata language [6] and the Sigali
synthesis tool [20].

Our contribution is in the proposal of this language, and
the “hidden” use of discrete controller synthesis in its compi-
lation cycle. We used for that only existing discrete controller
synthesis tools, in a fairly basic way. This article shows the
complete definition and implementation of this language,
whose basic principle have been exposed in [25].

In the remainder of this paper, Section 2 exposes mo-
tivations for the language’s constructs. Section 3 gives an

1 “Verification is autopsy” [18].
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Figure 1: Control system composed of computations encapsulated
into tasks, topped with an application.

informal overview of this language. Section 4 gives a detailed
description of all the language constructs, with associated
transitions systems and synthesis objectives: preliminary def-
initions are given in Section 4.1. Section 4.2 describes how
tasks are modelled, followed by resources in Section 4.3.
Section 4.4 describes temporal properties and Section 4.5 de-
scribes applications. In Section 5, the implementation using
synchronous tools is presented, and performance aspects are
discussed. Section 6 illustrates the approach with an exam-
ple. Section 7 concludes.

2. DOMAIN SPECIFICITIES

This section gives motivations for the language constructs in
terms of the targeted class of systems.

2.1. Computations, tasks, applications

We consider control systems composed of two layers, as ex-
posed in Section 1.3.1.

(i) The computation layer performs data transformation
algorithms, for example, numerical computations, in
an infinite loop. Such computation can be imple-
mented in another general language (e.g., as C code),
and, as shown in the lower part of Figure 1, has basic
control points:

(a) it can be started, which can involve initializations;
(b) it can notify that it has reached its end, that is, that

it is ready to stop: for example, a control law that
has reached its objective within a given precision
range (it may yet continue controlling the actua-
tor around the objective);

(c) it can be stopped;
(d) it can be suspended, that is, it ceases computation

and interaction, until it is resumed.

(ii) The control layer manages these computations’ starts
and stops, by encapsulating them into tasks, each pro-
vided with a local controller. As shown in the middle
part of Figure 1, this controller makes the relation be-
tween requests and starts, and between ends and stops:
as will be discussed below, several variants may make
sense. A task can also involve several modes of activity,
where the computation is different, as well as the re-
sources engaged.
These tasks can then be composed into applications,
using structures such as loops, sequences, or parallel
statements, in order to define a partial control over
execution of tasks. As shown in the upper part of
Figure 1, an application can be requested, and send
in turn, according to its control structure, requests
to underlying tasks. It can also eventually stop. Such
applications correspond to the control layer, defined
with theMaestRo language within Orccad [17]; but
while aMaestRo program entirely defines the behav-
ior of this control layer, applications in Nemo will de-
fine some control points to be constrained bymeans of
discrete controller synthesis.
This whole control layer is a discrete event system, we
see it as a synchronous reactive system [12].

2.2. Resources

Such computations are related to resources:

(i) for their computation: typically processors, memories,
communication links;

(ii) and in the embedded system: typically sensors and ac-
tuators.

These resources involve constraints which are implicit prop-
erties such as:

(i) exclusivity,
(ii) bounds on the number of users,
(iii) bounds on the available capacity,
(iv) the need to be always under control.

Within a task, modes can correspond to several differ-
ent configurations with respect to resource consumption, for
example, with choices between time and memory consump-
tion, degraded modes with lower quality level but also lower
consumption.

The application of discrete controller synthesis defines a
sequence of tasks by constructing a global controller that in-
teracts with the tasks’ local controllers by mean of control-
lable points. This global controller’s aim is to preserve the
properties of the resources.

2.3. The points to be controlled

Wewill describe here different possible articulations between
ends, stops, requests, and starts, which will motivate the
constructs of the Nemo language presented further. They
correspond to different kinds of computations that can be
seen in applications.
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2.3.1. Controlling the termination of a computation

As we said, the end reports that some termination condition
has been reached, the stop being the actual termination of the
computation. Controlling the termination of a computation
involves relating stops and ends.

Stop coming before end

Some computations may be stopped without having yet
reached their complete termination: for example, anytime
algorithms, characterized by an incremental construction
where each intermediary result can be delivered as a result,
be it of intermediary quality. Such tasks can hence be inter-
rupted before having reached an end: their stop can be trig-
gered.

Stop coming after end

Some computations reach their objective, and they can con-
tinue cyclically in order to maintain it: an example is a con-
trol law, always giving the correction to be applied by actua-
tors in order to near the objective. When the latter is reached,
continuing will just maintain the situation. This can be useful
and even necessary, for example, in Orccad [3], the “robot
tasks” encapsulating a control law have a “transition phase”
when the task is finished, but the next task is not yet started.
The task executes then a “degraded mode” until the start of
the next task, thus allowing the operation of actuators that
have to be always under control. Such tasks can hence be sus-
tained beyond their end: their end can be rejected, the stop
will occur at a later occurrence of the end, or delayed: the
stop occurs at a later point, even without reoccurrence of the
end.

2.3.2. Controlling the beginning of a computation

As for the termination, controlling the beginning of a com-
putation involves relating requests and starts.

Start coming after request

When a request is made for a task, it might not be started,
typically because of a resource not being available yet. Then,
the request may be memorized for later treatment, or not.
The request can be rejected: the start will occur at a later oc-
currence of the request, or delayed: the start occurs at a later
point, even without occurrence of the request.

Start coming without request

Some computations may be called without an explicit re-
quest, for example, default control tasks for an actuator that
must always be under control: their start can be triggered.

2.3.3. Controlling themodes during a computation

Modes are different ways to achieve the functionality of a
task, which vary in the resources they consume, the time

Declarative part Imperative part

Resolution

Resources
Temporal
constraints Tasks Applications

Complete controller

Figure 2: Compilation of Nemo .

they take, the quality of service they achieve. For example,
on an architecture composed of two processors P1 and P2,
some tasks can be executed on either P1 or P2. So, we can say
that this task is composed of two modes, each of them cor-
responding to the execution of the task on a given processor.
Another example is a computation that can be performed by
several algorithms, each of them using different amounts of
the available resources.

Switching modes can have the effect of, for example, re-
lease parts of a bounded resource for other tasks to be able
to begin, to switch to a better quality and more costly mode,
or unlocking a task waiting upon an exclusive resource. The
mode switches are part of the points controllable by the con-
troller to be synthesized.

3. OVERVIEWOF THE LANGUAGE

This section gives an informal overview of the Nemo lan-
guage, taking into account Section 2.

3.1. Programmingmultitasks systemswith NEMO

The Nemo language is devoted to build control layers. It al-
lows the description of an abstraction of the computation
layer, that is, the resources used, the ways computations can
be controlled, that is, tasks, as well as some explicit tempo-
ral properties between tasks. These declarations are used to
specify applications, in terms of an imperative sequencing of
tasks.

From these elements, two basic parts are derived, as
shown in Figure 2:

(i) a declarative part, grouping

(a) the constraints corresponding to resources,
(b) the explicit properties to be enforced,
(c) the declared consumptions of tasks;

(ii) an imperative part, grouping

(a) the observers for the explicit properties,
(b) the behaviors of the tasks,
(c) the behaviors of the applications.
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These two parts constitute a partial specification. The im-
perative part features behaviors not satisfying a priori the
constraints in the declarative part, with some controllable
points. Therefore, obtaining the complete controller satisfy-
ing these properties involves applying some resolution.

This requires the use of formal models and algorithms,
in order for the process to be automated, and encapsulated
into a compiler-like tool. In our approach, the models will
be automata, and the resolution will take the form of discrete
controller synthesis.

In the following, we will introduce the programming
constructs of the language in an informal way, from a user’s
view. Further sections will give the definitions in terms of
transition systems and synthesis objectives.

3.2. Resources: implicit properties

A resource is declared using the keywords resource and end
resource, with properties as follows. These properties are
all optional, and can be specified in any order.

Bounded number of users

This maximum number of tasks which can use the resource
at the same time is stated by usable by n tasks, where
n is a natural integer. For example, a resource declared as

resource actuator:
usable by 2 tasks;

end resource;

can be used by no more than 2 tasks. Exclusivity is the
particular case where n = 1.

Bounded capacity

A quantifiable resource, composed of elements which can
be distributed among the tasks using it (e.g., a mem-
ory), is declared by mean of the construct composed of n
elements. Uses of such a resource will be quantified, and
bounded by n.

Steady control

Some resources have to be controlled by at least one task,
for example, actuators in a robotic system. This is stated by
steady control.

Example

The following example shows the definition of a resource us-
able by at least one task, at most 3 tasks, and decomposable
in 42 elements:

resource r:
usable by 3 tasks;
composed of 42 elements;
steady control;

end resource;

3.3. Tasks

A task is declared by task, followed by the task name and a
colon, and end task. This construct encloses a list of task
properties, separated by semicolons, as follows.
3.3.1. Activity

A task’s activity involves three notions.

Properties of the beginning of the task

As explained in Section 2.3.2, a task can be stated as begin-
ning triggerable, beginning delayable, and beginning rejectable.
They are specified by the keyword start, followed by one or
more of triggerable, delayable, and rejectable. Due
to their incompatible meanings, the two options delayable
and rejectable are exclusive.

A beginning-triggerable and beginning-delayable task go
will then be specified as

task go:
start triggerable, delayable;
...

end task;

Properties of the end of the task

They are specified by the use of the keyword stop, followed
by the same keywords as for beginning properties.

Suspensibility

It means that computation can be suspended at any instant
by the task controller. Thus, resources used can be declared
as used only when the computation is actually running, or
always used (i.e., kept reserved and busy during the suspen-
sion). A suspensible task is specified by suspensible:

task think:
suspensible;

end task;

3.3.2. Resources used by a task

Usage of resources is specified by uses, followed by the
names of the resources used. If the resource is used even
when the task is suspended, it is specified by the keyword
always. The use of a decomposable resource is specified by
n of, followed by the name of the resource.

The following example shows how a task using three
resources can be declared. This task, named go forward,
uses a resource named wheels, 50 elements of a re-
source named cpu, and always 20 elements of the resource
memory. This example also illustrate the possible meaning of
decomposability of a resource:

task go forward:
uses wheels;
uses always 20 of memory;
uses 50 of cpu;

end task;
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3.3.3. Modes composing a task

A definition of a set of modes is surrounded by the keywords
modes and end modes. Thus, orthogonal aspects of a task
can be specified by means of different sets of modes, with
several such constructs.

The definition of eachmode

It is composed of its name, and what resources it uses (using
uses).

Transitions betweenmodes

Every transition between modes is not necessarily possible.
For example, in the case of three modes for high, medium
and low values of some characteristics, one can go from
high to low only through medium. So each transition has
to be specified explicitly. Also, we make the choice that
transitions are all bidirectional, and unconditioned (i.e.,
controlled entirely by the controller to be synthesized). A
transition between the two modes A and B is specified as
trans A <-> B;.

Example

The following example is the specification of a task encapsu-
lating a computation which can be performed by three differ-
ent algorithm versions, here named high, medium, and low.
It shows also how to deal with compromises such as CPU ver-
sus memory use, by having the synthesized controller decide
when to use what algorithm version, that is, in this example,
to switch between the high and medium algorithms, and be-
tween the medium and low ones:

task calc1 :
start rejectable;
modes

high : uses 100 of CPU,
always 50 of Memory;

medium : uses 80 of CPU,
always 70 of Memory;

low : uses 50 of CPU,
always 80 of Memory;
trans high <-> medium;
trans medium <-> low;

end modes;
end task;

In that specific case, the expected behavior of the syn-
thesized controller is that, if another task is undelayable and
requires 50% of CPU, then it will ensure that the system will
never get in the highmode of the calc1 task. Indeed, in this
mode, the system could not go back directly to the lowmode
in case of the request of the other task.

3.4. Temporal constraints: explicit properties

Until now, the properties considered were all seen through
the use constraints declared with the resources. Some other
constraints could be required, for reasons not directly re-

lated to any declared resource, but having to do with some
knowledge about the environment, for example, the possi-
ble incompatibility between some activities for reasons not
modelled here (waiting for a temperature to cool down, rins-
ing brushes between painting in two different colours, etc.).
Therefore, we introduce a few constructs enabling the specifi-
cation of explicit temporal constraints. Properties expressible
in Nemo will be safety temporal properties.

The basic events of those properties are tasks executions:
a “task execution” runs from the emission of its “start” sig-
nal to the emission of its “stop” signal. The temporal prop-
erties will then be expressed in term of observers [26] on
these events. Nemo provides five elementary property pat-
terns, and two logical operators to compose properties.

Always between

Between the executions of the two specified tasks t1 and t2,
a third specified task t3must always be executed. This is ex-
pressed as

property
always t3 between (t1,t2)

end property;

Always before

The execution of a specified task must always be preceded by
the execution of another specified task.We can imagine, as an
example, a physical resource r which has to be initialized by
executing a task named init before any use of r. Then, if a
task t is declared as using r, we have to explicitly declare that
initmust be executed before t. This is expressed as always
init before t:

property
always init before t

end property;

Always during

During any execution of a task t1, t2 must be executed:
always t2 during t1:

property
always t2 during t1

end property;

Always while

Task t1 must always be executed while t2 is executed:
always t1 while t2:

property
always t1 while t2

end property;

Never while

The executions of tasks t1 and t2 are mutually exclusive:
never t1 while t2:

property
never t1 while t2

end property;
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Or, and

They are the classical ones. The “not” operator cannot be al-
lowed, so as to stay within safety properties.

3.5. Applications

Applications are the imperative part of Nemo . Their purpose
is the expression of an order of execution of the tasks, for a
functionality to be produced.

Once we have defined, through the declarative part of the
language, a set of resources, tasks, and properties, the inter-
face provided by the system obtained to its environment (i.e.,
its set of uncontrollable inputs) is, for each task, two request
signals, respectively, requesting the start and the end of the
task. These signals can then be received from the environ-
ment to the system at any time and in any order.

Applications define an intermediate layer emitting start-
ing requests to task controllers, and waiting for ends of tasks,
as shown in Figure 1. Compared to the usual intuition in im-
perative languages, sending a request does notmean immedi-
ate activation of the task: the sequencing is to be interpreted
as being soft.

The definition of an application is surrounded by the
keywords application, followed by the application name
and a colon, and end application. It encloses the applica-
tion statement as follows.

Task or application request

It will simply be denoted by its name (this simple application
will just emit the signal req, and terminate when it receives
the signal stop).

Sequence

The sequence of two applications app1 and app2 requests
app1, then upon termination app2. It is denoted by

app1; app2. (1)

Parallel

Parallel composition of two applications app1 and app2 re-
quests app1 and app2 simultaneously. It terminates when
both are terminated. This is denoted by

app1 | | app2. (2)

Alternative

Alternative between two applications app1 and app2 executes
either app1, or app2, and terminates with the chosen applica-
tion. The choice is left free, for the controller to decide, either
at run-time, if both are potentially possible, or offline, if the
preservation of properties excludes one. This is denoted by

app1 | app2. (3)

Trigger

Trigger of an application app by a signal s awaits the occur-
rence of s, then requests app. It is denoted by

s triggers app. (4)

Loop

Loop of an application app, executed repeatedly until the oc-
currence of a signal s requests app; once app terminates, if
s is absent, it requests app again, and so on. The condition
required to get out of a loop may appear rather restrictive,
but one can see that they could be emitted from observers
[26, 27] in a general way. This is denoted by

loop app until s. (5)

Here is a small example of use of this application lan-
guage: the application A2 is a loop, which executes repeatedly
the task T3, then the tasks T4 and T5 in any order, and then
the application A1 which executes either T1 or T2:

application A1 :
T1 | T2

end application;

application A2 :
loop

T3 ; (T4 || T5) ; A1
until kill_A2

end application;

3.6. Compiling a NEMO program

Now that the Nemo language is defined, its compilation to-
wards a complete controller will have to start from a set of
resources, temporal constraints, tasks, and applications, as
shown in Figure 3, which can be seen as a refinement of
Figure 2.

Based on such a program, a compilation-like process
constructs an automaton-based model of behaviors to be
controlled, featuring free variables for the points to be con-
trolled, and a set of properties derived from the declared con-
straints which are objectives for the synthesis. Discrete con-
troller synthesis is applied on them. It computes the controller,
that is, the constraints on the control points of the tasks
which are necessary for the properties or objectives to be ful-
filled. This way, the controlled automaton, such that the prop-
erties are satisfied, can be used through the coexecution or
cosimulation engine.

This way, we achieve a form of hidden formal method,
thus relieving users from heavy prerequisites in technicalities
of the formal method applied.

4. MODELLING BEHAVIORS AND PROPERTIES

This section presents the formal modelling of Nemo . The
behavioral aspects will be defined in terms of labelled tran-
sition systems, with a synchronous composition operator as
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Figure 3: Compilation of Nemo : models and algorithms.

in synchronous languages [10–12]. Properties on states and
trajectories will be translated to synthesis objectives. When
such properties concern sequences of transitions or states,
they are defined in terms of synchronous observers, embod-
ied as transition systems composed with the previous ones
[2].

4.1. Preliminary definitions

We briefly recall the notions used here, in a classical way, and
which are detailed elsewhere [2].

4.1.1. Transition systems

The labelled transition systems we use in this paper areMealy
automata. An automatonA is a tupleA = 〈Q, sinit,I,O,T 〉
where Q is the states set, sinit ∈ Q the initial state, I and O
the input and output variables sets, and T ⊆ Q×Bool(I)×
2O ×Q the transitions set. Bool(I) is the set of Boolean ex-
pressions with variables in I. We denote by A1‖A2 the syn-
chronous composition [2, 10–12] of the two transition sys-
temsA1 andA2, as defined in [2]. IfA = A1‖ · · · ‖An and
si ∈ Qi, we denote by si the subset of Q whose projection in
Qi is equal to si. si denotes the complementary of si in Q. A
states setQ′ ⊆ Q is an invariant set forA if and only if every
eligible transition outgoing from states of Q′ leads to a state
ofQ′.

4.1.2. Weight functions

We are going to describe properties of states by means of
weight functions. These weight functions will later be used to
specify the number or quantity of resources used in states. A
weight function on a states set Q is a function f : Q → N
assigning a value to each state of the transition system. We

will manipulate such functions using addition and multi-
plication of two functions, and product of a function by a
scalar λ, with the usual meaning: (λ · f )(q) = λ · f (q),
( f + g)(q) = f (q) + g(q) and ( f · g)(q) = f (q) · g(q). Fur-
thermore, all the weight functions considered below apply on
the states set resulting from the general composition of all the
automata.

4.1.3. Discrete controller synthesis

We simply use the classical notion [2, 19], without modify-
ing it in this work. The aim of the discrete controller synthe-
sis is, from an automatonA, to compute a controller C such
thatA‖C satisfies a property P, called synthesis objective, not
satisfied a priori byA. ForA = 〈Q, sinit,I,O,T 〉, and a par-
tition of its inputs variables into two subsets Ic (the control-
lable inputs) and Iu (the uncontrollable ones), a controller of
A is an automaton C = 〈Q, sinit,Iu,O ∪ Ic,T ′〉 such that
∃(s, �u ∧ �c,O, s′) ∈ T ⇔ ∃γ ⊆ Ic ∧ ∃(s, �u,O ∪ γ, s′) ∈ T ′,
where �u (resp., �c) holds on only variables of Iu (resp.,
Ic) and γ holds at most the controllable inputs of �c. This
means that the computed controller will control a fixed sub-
set Ic of the inputs. The values of inputs of Ic will be com-
puted by this controller from the current state and Iu val-
ues.

Tools and algorithms exist, for example, in the syn-
chronous approach [20], which we use as they are. A detailed
discussion of their principles is beyond the scope of this pa-
per. We use only the invariance objective, that is, the prop-
erties to be satisfied are all invariance properties: for an au-
tomatonA, we denote by Inv(S) the controller C such that S
is invariant forA‖C.

For the sake of readability, in the following representa-
tions of automata within this paper, controllable inputs will
be represented in bold faces.

4.2. Tasks: behaviors

We are building, from the properties of a task t, an automa-
tonAt modelling the behavior of t.

4.2.1. Beginning of the task

It is related to a request, coming from, for example, the ap-
plication automaton, as will be defined further, and being
an uncontrollable signal req. The task controller will emit
a start signal to actually launch the computation encapsu-
lated in the task. In order to express the controllability on
the beginning of the task, we introduce a controllable signal
named ok, which will control the emission of start of tasks
with a nonstrict beginning (i.e., delayable or rejectable). Fur-
thermore, in every subsequent automata depicted, the state
names I , A,W , and F stand, respectively, for “Idle,” “Active,”
“Waiting” and “Final.”

The behavior of a task with a strict beginning is defined
by the automaton on Figure 4(a). The start signal is emit-
ted when req occurs; there is no means to inhibit it.
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I

A

stop req/start

(a) Strict

I

A

W

stop
req∧ok
/start

req∧¬ok

ok/
start
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I

A

stop
req∧ok
/start

req∧
¬ok

(c) Rejectable

I

A

stop req/start

ok/start

(d)Triggerable

Figure 4: Models of tasks beginnings (bold inputs are controllable ones).
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A
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ok/stop
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I

A

start

end∧
¬ok

end∧ok
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(c) Rejectable

I

A

startend/stop

ok/stop

(d) Triggerable

Figure 5: Models of tasks ends.

A “non-strict” beginning means that the request can be:

(i) delayable: the task controller will memorize it, as in
Figure 4(b), and actually launches the task on the oc-
currence of a controllable signal ok;

(ii) rejectable: the task can only begin in the presence of
a request. It is rejected if the controllable signal ok is
false, and will in that case wait for the next occurrence
of start, as in Figure 4(c).

A “triggerable” beginning means that the computation
can be launched by the task controller, by mean of the con-
trollable signal ok, without request from the environment,
as in Figure 4(d). This property is very useful to define de-
fault task-controlling resources which have to be steadily
controlled.

To this automatonAt
beg, we associate a weight function

W t
beg(q) =

⎧
⎨
⎩
1 if q ∈ A,

0 otherwise.
(6)

4.2.2. End of the task

It involves a similar modelling: a signal called end is received
(e.g., from the computation itself). The task controller will
emit a stop signal to actually stop the computation, and re-
port the actual end of the task to the environment.We use the
same controllable input ok to control the emission of stop
with respect to occurrences of end and properties of the task.
Figure 5 show the automaton modelling the ends of tasks.
This automaton isAt

end.

4.2.3. Suspensibility of the task

It is modelled by the automaton At
susp of Figure 6(b), to be

composed with the previous ones. A new controllable input
susp allows for switching between the “active” and the “sus-

pended” states. We associate to it a weight functionW t
susp de-

fined as

W t
susp(q) =

⎧
⎨
⎩
1 if q ∈ A,

0 otherwise.
(7)

4.2.4. Modes

They are modelled as a new automaton, in parallel with the
previous ones, with an “idle” state, one state sm for each
mode m, and controllable transitions between the modes
reachable from each other.

Figure 6(a) shows the automaton representing the set of
modes as defined in the example of Section 3.3.3: l, m, and h
are controllable inputs which allow the task controller to con-
trol the mode in which the task is executed. We use here one
input per mode for the sake of readability, but for determin-
ismwe actually assign to eachmodem an expression �m, such
that for all (m1 /= m2)¬(�m1 ∧ �m2 ).

For each mode m, we denote by tm the task concerning
m, and we associate to m a weight function Wm defined as
(sm stands for the state representing the mode in the automa-
ton modelling the set of modes which containsm):

Wm(q) =
⎧
⎨
⎩
1 if q ∈ sm,

0 otherwise.
(8)

4.2.5. Global behavior of the task

The definition of the automatonAt, modelling the global be-
havior t is then deduced from above as:

At =At
beg

∥∥At
end

∥∥At
susp

∥∥At
M1

∥∥ · · ·∥∥At
Mn
, (9)

where the At
Mi

are the modelling each modes set Mi of the
task t.
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Istop stop

stop
start∧l start∧m

start∧h
m∧¬stop

l∧¬stop m∧¬stop

h∧¬stop
L M H

(a) Model of three modes of a task

Istop stop

start∧¬susp
start∧susp

susp∧¬stop

¬susp∧¬stop
A S

(b) Model of the suspension of a task

Figure 6: Models of modes and suspension.

4.3. Resources: implicit properties and
synthesis objectives

Now that the behavior of tasks is specified in term of transi-
tion systems, we are going to show what implicit properties
can be deduced from the resources and tasks properties, and
are translated in terms of synthesis objectives.

4.3.1. Notations

We will consider that T and R are, respectively, the sets of
the tasks and resources composing the system. For r ∈R, T r

is the set of tasks which use r, partitioned in two subsets T r
alw

and T r
act the sets of tasks using r, respectively, always (spec-

ified by always with suspensible), and only when active.
In the same way, we denote byM the set of all modes,Mr the
set of modes using r partitioned as well in two subsets Mr

alw
andMr

act.
For all decomposable resources r, we define the functions

ETr : T r → N and EMr : Mr → N where ETr(t) (resp.,
EMr(m)) is the number of elements of r used by the task t
(resp., in the modem).

We also define the following two functions:

(i) N : R → N where for r ∈ R, N (r) is the maximum
number of tasks which can use r at the same time;

(ii) E : R → N where for r ∈ R, E(r) is the number of
elements composing r.

4.3.2. Synthesis objectives

Bounded number of resource users

It is handled by a functionUr : Q → N, associating a weight
Ur(q) on each state q of the global system, representing the
number of tasks using r in the state q.Ur can easily be com-

puted by means of the functions introduced above:

Ur=
∑

t∈T r
alw

W t
beg+

∑

t∈T r
act

W t
susp+

∑

m∈Mr
alw

Wm+
∑

m∈Mr
act

Wm ·W tm
susp.

(10)

Then, to preserve the implicit property that the resource r
will not be used bymore tasks than it can hold, the computed
controller must ensure that the system will stay within the set
of states q such thatUr(q) ≤ N (r).

So, the synthesis objective to ensure the property of
bounded number of users of r is

Inv
({
q ∈ Q |Ur(q) ≤ N (r)

})
. (11)

Exclusiveness

It is just the special case whereN (r) = 1.
Distinguishing this case is worthwhile, as the synthesis

objective can be expressed only in terms of states exclusive-
ness, into Boolean formulas, computable much more effi-
ciently.

Steady control

Steady control for r corresponds to the objective

Inv
({
q ∈ Q |Ur(q) ≥ 1

})
. (12)

There again, it can be formulated in a Boolean formula.

Decomposable resources

r is handled with a function Cr : Q → N, where Cr(q) giv-
ing the total amount of elements of r consumed by the tasks
using r in the state q:

Cr =
∑

t∈T r
alw

ETr(t) ·W t
beg +

∑

t∈T r
act

ETr(t) ·W t
susp

+
∑

m∈Mr
alw

EMr(m) ·Wm +
∑

m∈Mr
act

EMr(m) ·Wm ·W tm
susp.

(13)

Then, the controller is

Inv
({
q ∈ Q | Cr(q) ≤ E(r)

})
. (14)

4.4. Temporal constraints: explicit properties

Observers and objectives

They are translated into observer automata, describing se-
quences leading to an “error” state Err where they are vio-
lated. The synthesis objective is the invariance of the state set
deprived of this “error” state: Inv(Err).

The observers are placed in parallel with the automata
managing the tasks. They will take as inputs the “start” (ai)
and “stop” (si) signals of the tasks they observe.
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s2 ∧ a3

s1
s2∧¬a3 ∧ a1

s2∧¬a3∧¬a1

a1∧¬a3

a3∧¬s1 a3

Err

(a) Always t1 between (t2,t3)

s1

¬s1 ∧ a2

Err

(b) Always t1 before t2

s1
a2 ∧ a1

a2 ∧¬a1

a1 ∧¬s2

s2 ∧¬s1 s2

Err

(c) Always t1 during t2

Figure 7: Observers for the temporal constraints.

“Always between” observer

Figure 7(a) depicts the observer for the property

always t1 between (t2,t3)

The state “Err” is reached when a3 occurs after s2, unless a1
then s1 are emitted in between.

“Always before” observer

Figure 7(b) depicts the observer for the property

always t1 before t2

The “Err” state of this observer is unreachable once t1 has
been executed.

“Always during” observer

Figure 7(c) depicts the observer for the property

always t1 during t2

This observer is very similar, and can easily be compared with
the observer of the “between property” (see Figure 7(a)). The
differences are due to taking into consideration that a task
lasts at least one instant.

“Always while” property

This property does not need adding an observer. Actually, the
property “t1 is executed always while t2 is executed” is strictly
equivalent to “the model automaton of t1 is in an execution
state ⇒ the model automaton of t2 is in an execution state.”
LetA1 andA2 be, respectively, the execution states of t1 and t2
(actually, the states labelled A of the automaton of Figure 4).
Then the controller to synthesize must ensure the property

Inv
(
A1 ∪ A2

)
. (15)

“Never while” property

There again, the property can be straightforwardly translated
in a synthesis objective of invariance state set

Inv
(
A1 ∪ A2

)
. (16)

4.5. Applications

4.5.1. Control automaton for an application

For each application, a control automaton can be con-
structed. Each declared application has a name, and is
launched on the occurrence of a signal req name. The au-
tomaton of an application named A is shown in Figure 8(a).
On this figure, the two signals req A and stop A are, re-
spectively, the requesting signal from the environment to
launch the application and the signal emitted by the applica-
tion to report its end. It can be launched again at the instant
it terminates. This way, the synchronous paradigm is kept:
this application can be called in a loop, for example.

D and g are, respectively, a set of requesting signals, and
a guard. They are structurally computed from the structure
of the body of the application, as well as the core of the au-
tomaton, represented in the figure by the grey ellipse. The
structural translation uses “protoautomata,” an intermedi-
ary form of automata, to represent each statement translated,
and which will be composed together.

A protoautomaton is an automaton as shown in
Figure 8(b), with a labelled initial transition and a “final
state,” that is, a sink state, with only one incoming transition,
with a guard g and no emission:

(i) the initial state is the state where the statement is
launched;

(ii) D is the set of request signals to be emitted at the
launch of the statement;

(iii) the final state is where the statement is finished.

In the structural construction, the labelled initial transition,
the final state and its incoming transition, will eventually be
suppressed in the composition with other protoautomata.
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req A/D

g∧¬req A/stop A g∧req A/stop A, D
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D

g

(b) Proto automaton
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(c) Task

D1

g1/D2 g2

A1 A2

(d) Sequence

· · ·

g1/end1 gn/endn

/end1 /endn

A1 An

n⋃

i=1
Di
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endi

(e) Parallel

{req trig}

end trig

(f) Trigger

req trig∧¬s s

A

req trig∧ s

g/end trig

(g) Triggered statements (in parallel)

D

g ∧ s
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(h) Loop
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e

(i) Alternative

A1 A2

r∧¬c/D1 r ∧ c/D2
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g1 ∧ r∧¬c/e,D1 g2 ∧ r ∧ c/e,D2

g1 ∧ r ∧ c/e,D2

g2 ∧ r∧¬c/e,D1

(j) Alternative statements (in parallel)

Figure 8: Models of applications.
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4.5.2. Control automata for statements

Request for a task or application

It consists in emitting the request, and waiting for the stop, as
in Figure 8(c): the signals “req” and “stop” are, respectively,
the signal requesting the launch of the task (or the applica-
tion), and the signal reporting its end. The requesting signal
is to be emitted immediately, at the first instant of the state-
ment. This statement terminates once the “stop” signal oc-
curs.

Sequence

Sequence of two statements concatenates their protoau-
tomata as in Figure 8(d), representingA1;A2. The initial state
and the initial signals set of the result are those of A1. When
A1 terminates, requests D2 for A2 are emitted, going to the
initial state of A2. The final state is that of A2. The final state
of the A1 protoautomaton is removed in the structural con-
struction.

Parallel composition

The resulting proto automaton encapsulates the syn-
chronous composition of the composed proto automata
into an initial state. Then, synchronization on termination
of all branches causes terminating the parallel construct.
Figure 8(e) gives the result of this construction.

Trigger statement

Trigger involves taking into account that the trigger signal
can occur at the very instant the statement is launched. Two
parallel automata are set up, one for the trigger statement
itself (see Figure 8(f)) and, in parallel, one for the triggered
statement (see Figure 8(g)).

Loop

Loop involves the proto automaton of Figure 8(h). When A
terminates, if the signal s is not present, A is launched again,
with emission of signals D.

Alternative

Similarly to the trigger, this statement involves two proto au-
tomata: as we have to take into account the signals present at
the instant when the application is launched, we have to dis-
join the automaton managing the alternative, and the proto
automaton actually representing the application.

They represent the statement itself (see Figure 8(i)), and
the alternative between A1 and A2 (see Figure 8(j)), in paral-
lel with the rest of the global application. c is a new control-
lable signal for the choice of the actually launched statement.

4.6. Global model

For a given Nemo program, a global automaton is built
by synchronous composition of all relevant automata, as

shown in Figure 9. Relevant weight information is associated
to states. Also, invariance synthesis objectives are generated,
corresponding to the various constraints given by resources
and tasks, and observers.

At this level of granularity, abstracting away from the
computations in the tasks, the automaton is already quite
large. Two perspectives are to be explored: finer grain in
modelling the tasks can lead to a finer resolution of the con-
trol; better abstractions and compositionality [9] and using
coordination code (glue) for some of the properties would
alleviate from part of the synthesis cost.

5. COMPILATION OF NEMO: IMPLEMENTATION

5.1. Implementation

Nemo is implemented as illustrated in Figure 10, which is
a concretization of Figure 3. The compiler takes a Nemo
program, and produces, according to each entity (re-
source, temporal constraint, task, application), the behav-
ioral parts, in terms of Mode Automata, in its textual syn-
tax (.targos), and the more declarative parts, weights and
objectives, in terms of the equational format for the Si-
gali tool2 (.z3z) [20]. The global automaton is compiled
using the Matou Mode Automata compiler3 [6], into an
equational representation (.z3z), for synthesis purposes,
and into the EC4 format (.ec) for execution and simula-
tion.

Discrete controller synthesis is performed by Sigali on
the basis of the transition system and the objectives. The re-
sulting controller, available in the .res and .sim formats, is
fed to a resolver, encapsulated into the interactive tool Sigal-
Simu [2], which performs a co-simulation of the EC represen-
tation with the controller.

5.2. Performances

The significance of our approach strongly depends on the
performance of the synthesis tool used. Indeed, while the
compilation of the language to automata and synthesis objec-
tives is straigthforward, the actual bottleneck is the discrete
controller synthesis, the complexity of which being, just like
for model-checking verification, in the worst case polyno-
mial in the size of the state space to handle. The state space
of a system produced by the compilation of a Nemo pro-
gram grows exponentially with the number of tasks and ap-
plications, as each of these is modelled by an automaton,
and the comprehensive system being the synchronous prod-
uct of all these automata. It is also to be expected that the
performance, in the worst case, will increase dramatically
with the size of the model in term of number of tasks and
applications. However, we claim that the size of manage-
able systems is already meaningful, and rising, just like for

2 http://www.irisa.fr/vertecs/Logiciels/sigali.html.
3 http://www-verimag.imag.fr/∼synchron.
4 Executable Code.

http://www.irisa.fr/vertecs/Logiciels/sigali.html
http://www-verimag.imag.fr/~synchron
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Figure 9: Complete system model.

model-checking verification, especially when compared to
what can be achieved brainually.5

In order to evaluate the pertinence of the approach, we
have measured the time taken by the controller synthesis
on models composed of n start-rejectable tasks, for several
values of n. The results of this experiment are presented in
Table 1.

The actual experimental results presented above show
that our approach is relevant for the studied domain, that
is, control systems. The synthesis tool has indeed been able
to handle in a few seconds systems composed of more than
30 tasks.

Nevertheless, one can notice several severe losses of per-
formance, for example, for systems composed of 24, 28, or

5 We gratefully thank Albert Benveniste for this neologism, formed from
the two words “brain” and “manually.” It intends to capture the fact that
such work generally involves more the “brain” than the “hands.”

32 tasks. Indeed, the computation time of the controller syn-
thesis is difficult to predict, as it rests on manipulation of
symbolic equations implemented as BDDs.6 However, the
synthesis time depends on many parameters, several of them
being difficult to master, as, for example, the order of the
variables. This problem is a recurrent one in the framework
of symbolic computation using BDDs, and discussing it fur-
ther is beyond the scope of this paper; our work can benefit
from results of the very active ongoing research in this area.

Finally, a noteworthy point is that our approach comes
as a substitute to the traditional one of design then verifi-
cation then correction. Thus, even if the discrete controller
synthesis operation on some systems is not cheap, it is to be
reminded that the verification on a similar system would be
evenly expensive, as verification and synthesis are based on
the same algorithmic basis. The size of the systems possibly

6 More precisely, (ternary decision diagrams) TDDs for Sigali .
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Table 1

Nb of tasks 1 · · · 10 · · · 15 · · · 20

Synthesis time 0.01 s · · · 0.34 s · · · 4.09 s · · · 4.74 s

Nb of tasks · · · 23 24 25 26 27 28

Synthesis time · · · 4.80 s 53min · 50 s 20.60 s 10.79 s 9.61 s > 24h

Nb of tasks 29 30 31 32 · · ·
Synthesis time 27.88 s 24.21 s 22.96 s ≈ 19h · · ·

Resources

SigalSimu

Temporal
constraints Tasks Applications

.z3z
objectives

.targos
mode automata

.z3z Matou

Sigali

.res .sim .ec

Interactive simulator

Figure 10: Compilation of Nemo : synchronous tools-based imple-
mentation.

managed by the two approach will also be the same. Further-
more, it must be considered that the controller synthesis does
provide a solution, and in that sense it is to be compared with
hours, or days, of brainual design.

6. TYPICAL EXAMPLE

The example proposed in Figure 11 gathers some of the in-
teresting features of Nemo . The systemmodelled is a robotic
arm aimed at moving some objects from a place to another.
The two resources modelled are the actuator (the moving
arm), and a CPU. The actuator is obviously an exclusive re-
source, and we also want its steady control. The elements of
the CPU can be viewed as the percentage of use of it. The
system encloses two categories of tasks: hold arm (“default”
task holding the arm in its current position), grab, move,
and release actually manipulate the arm, whereas check
and compute move are computing tasks. We assume that
the objects are brought toward the arm, for example, by a
conveyor belt. Some of these objects are delicate, so at any
time, the operator can trigger a checking computation to in-
sure that the system is currently able to handle such objects

properly. The event end checking signals that from now,
all objects are standard, and the check computation will not
need to be performed any more.

In this example, the synthesis will compute a controller
that will enforce the activation of the hold arm task every
time none of the other manipulating tasks is executed.

It will also force the second branch of the alternative of
move object, as long as the task check can be triggered,
because the CPU would not have the capacity to handle the
three tasks compute move, move and check at the same
time. This does show the interest of using discrete controller
synthesis, as the choice involves a look ahead in the possible
paths.

One can also notice that the explicit property “always
move between grab and release” will not need any controller
synthesis, as it is enforced by the application. In this case, the
controller synthesis computation behaves as a verification: if
the property is satisfied by the transition system, the con-
troller gives no additional constraint. If it had not been the
case, in another application, the synthesis would have failed,
because the tasks are not controllable.

7. CONCLUSION AND PROSPECTS

7.1. Results

Results presented are a domain-specific language, devoted to
multitask systems, and its implementation. Its definition in-
volves a model of multitask control as transition systems, and
the application of discrete controller synthesis techniques. The
framework is an instance of user-friendly, “invisible” formal
method, where the final user need not know about the un-
derlying technicalities.

The approach presented was shown to be well adapted to
the application area considered, that is, the design of robotic
controllers. Indeed, this approach shares many concepts cur-
rently manipulated by existing tools of this area, such as
Orccad where robot controllers are designed by mean of
robot tasks and robot procedures (sharing the same role as,
resp., tasks and applications in Nemo). Moreover, the per-
formances of the underlying controller synthesis tool gives
good hopes for scaled applications. Furthermore, it can be
noted that even if Nemo is aimed at the design of robotics
systems, it indeed can be applied to any control system ex-
pressible in terms of computing tasks, topped with a control
layer on which one want to ensure temporal Boolean proper-
ties.
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resource actuator arm:

exclusive;

steady control;

end resource;

resource CPU:

composed of 100 elements;

end resource;

task hold arm:

start triggerable,rejectable;

stop triggerable,rejectable;

uses actuator arm, 5 of CPU;

end task;

task grab:

uses actuator arm, 20 of CPU;

end task;

task move:

uses actuator arm, 20 of CPU;

end task;

task release:

uses actuator arm, 20 of CPU;

end task;

task check:

uses 40 of CPU;

end task;

task compute move:

modes

Precise move : uses 80 of CPU;

Rough move : uses 50 of CPU;

trans Precise move <-> Rough move;

end modes;

end task;

property

always move between (grab,release)

end property;

application move object:

(grab;(compute move||move);release)

| (grab;compute move;move;release)

end application;

application main:

loop (move;move object) until end app ||

loop (sig check triggers check) until

end checking

end application;

Figure 11: Example of Nemo program.

7.2. Prospects

Although the language presented and its implementation are
consistent, it is only an outline to suggest what could be an
actually useable, more general-purpose language. Therefore,
some work still remains.

First short-term prospects concern usability of the frame-
work. In the case of absence of solution, the current choice
is a short error message pointing out what objective is not
synthesizable. It is worthwhile to think about what kind of
diagnosis could be useful to the end users: counter examples,
properties to add or remove in the currentmodel. Also, prob-
lems of usability include integration in the aimed application
area. Until now, the resulting controller has only a simula-
ble form. A future implementation should be able to connect
the resulting controller to a run-time executive, together with
computations encapsulated in tasks.

A different and orthogonal concern is the extension of
the multitasks system model used. The reasoning about, for
example, relations between requests and actual beginning of
tasks has to be generalized, as its criticalness may depend on
the context of the request itself. Model of tasks can, for exam-
ple, be extended with notion of successive execution phases,
allowing more sophisticated models of tasks to be more eas-
ily described. Given a more specific application area (e.g.,
fault-tolerant design [28]), model of resources can also be
augmented with some ad hoc primitives in order to allow
the building of more elaborated environment models (e.g.,
where resources can fail or wear off).

Finally, the exclusive use of invariant synthesis objectives
may be restrictive, and besides generally leads to a controller
still allowing some control (as the controller synthesis com-
putes the most permissive controller). In such a controller,
choices between eligible values for controllable inputs have
to be made at execution time. From this point of view, it
could also be interesting to consider other kinds of synthesis
objectives, qualitative ones such as reachability or attractiv-
ity, or quantitative ones such as optimal synthesis on paths.
A further study could also be to integrate in the approach
some alternatives for the current synthesis tool: solving some
constraints with coordination code, or other synthesis tech-
niques such as compositional controller synthesis.
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